\(\Leftrightarrow\frac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2-x+1\right)\left(x^2+x+1\right)}=\frac{3}{x^5+x^3+1}\)
\(\Leftrightarrow\frac{x^3+1-x^3+1}{\left(x^2+1\right)^2-x^2}=\frac{3}{x^5+x^3+x}\)
\(\Leftrightarrow\frac{2}{x^4+2x^3-x^2+1}=\frac{3}{x^5+x^3+x}\)
\(\Leftrightarrow2x^5+2x^3+2x=3x^4+6x^3-3x^2+3\)
\(\Leftrightarrow2x^5-3x^4-4x^3+3x^2+2x-3=0\)