Sửa đề: \(\dfrac{1}{x+\sqrt{1+x^2}}+\dfrac{1}{x-\sqrt{1+x^2}}+2=0\)
\(\Leftrightarrow\dfrac{x-\sqrt{1+x^2}+x+\sqrt{1+x^2}}{x^2-1-x^2}+2=0\)
=>-2x+2=0
=>x=1
Sửa đề: \(\dfrac{1}{x+\sqrt{1+x^2}}+\dfrac{1}{x-\sqrt{1+x^2}}+2=0\)
\(\Leftrightarrow\dfrac{x-\sqrt{1+x^2}+x+\sqrt{1+x^2}}{x^2-1-x^2}+2=0\)
=>-2x+2=0
=>x=1
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
1.Giải hệ phương trình:
\(\left\{{}\begin{matrix}2x+y=5\\3x-2y=11\end{matrix}\right.\)
2.Rút gọn biểu thức:
B=\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{1}{\sqrt{x}+2}\)với x>0;x\(\ne\)9
Giải các phương trình sau:
a) \(\sqrt{25x^2-9}-2\sqrt{5x+3}=0\)
b) \(\dfrac{\sqrt{x-3}}{\sqrt{2x+1}}=2\)
c) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
Cho biểu thức \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\), \(x\ge0,x\ne1\)
a) Rút gọn biểu thức A.
b) Giải phương trình \(\left(\sqrt{x}+1\right).A=x\)
c) Đặt \(B=\dfrac{7A}{3\left(2\sqrt{x}-1\right)};x\ge0,x\ne1,x\ne\dfrac{1}{4}\). Tìm số hữu tỉ x để B có giá trị nguyên.
1.giải hệ phương trình:
\(\left\{{}\begin{matrix}2x-y=3\\x+y=0\end{matrix}\right.\)
2.Rút gọn biểu thức
\(A=\dfrac{x+20}{x-4}+\dfrac{2}{\sqrt{x}+2}-\dfrac{6}{\sqrt{x}-2}\) với x\(\ge\)0;x\(\ne\)4
Bài 1: Giải phương trình
\(\sqrt{x^2-25}-6=3\sqrt{x+5}-2\sqrt{x-5}\)
Bài 2: Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-3};\) B = \(\dfrac{7}{\sqrt{x}+1}-\dfrac{12}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}\) .
a) Rút gọn M = A – B
b) Tìm giá trị nguyên nhỏ nhất để biểu thức M đạt giá trị nguyên nhỏ nhất.
Giúp mình với, mình đang cần gấp ạ
giải các phương trình sau:
a) \(\sqrt{x^2-2x+1}\)=\(x^2-1\)
b) \(\sqrt{x^2+x+\dfrac{1}{4}}\)=\(x\)
c) \(\sqrt{x^4-8x^2+16}\)=\(2-x\)
giải phương trình:
\(\dfrac{\sqrt{x-1}}{\sqrt{x^2-x}}=3\)
Cho biểu thức:
A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}}{x-1}\)
a.Rút gọn biểu thức A
b.Tìm m để phương trình \(mA=\sqrt{x}-2\) có 2 nghiệm phân biệt