a.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow x^2+4-3\sqrt{x\left(x^2+4\right)}+2x=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+4}=a\\\sqrt{x}=b\end{matrix}\right.\)
\(\Rightarrow a^2-3ab+2b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+4}=\sqrt{x}\\\sqrt{x^2+4}=2\sqrt{x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+4=x^2\left(vn\right)\\x^2+4=4x\end{matrix}\right.\)
\(\Leftrightarrow x=2\)
b,
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow x^2+1-\sqrt{\dfrac{x\left(x^2+1\right)}{2}}-x=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+1}=a>0\\\sqrt{\dfrac{x}{2}}=b\ge0\end{matrix}\right.\) ta được:
\(a^2-ab-2b^2=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow a-2b=0\) (do \(a+b>0\))
\(\Leftrightarrow\sqrt{x^2+1}=2\sqrt{\dfrac{x}{2}}\)
\(\Leftrightarrow x^2+1=2x\)
\(\Leftrightarrow x=1\)