Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Thị Thúy

giải phương trình :

a,\(x^2+2x+4=3\sqrt{x^3+4x}\)

b, \(x^2-x+1=\sqrt{\dfrac{x^3+x}{2}}\)

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 16:36

a.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow x^2+4-3\sqrt{x\left(x^2+4\right)}+2x=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+4}=a\\\sqrt{x}=b\end{matrix}\right.\)

\(\Rightarrow a^2-3ab+2b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+4}=\sqrt{x}\\\sqrt{x^2+4}=2\sqrt{x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+4=x^2\left(vn\right)\\x^2+4=4x\end{matrix}\right.\)

\(\Leftrightarrow x=2\)

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 16:38

b,

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow x^2+1-\sqrt{\dfrac{x\left(x^2+1\right)}{2}}-x=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+1}=a>0\\\sqrt{\dfrac{x}{2}}=b\ge0\end{matrix}\right.\) ta được:

\(a^2-ab-2b^2=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow a-2b=0\) (do \(a+b>0\))

\(\Leftrightarrow\sqrt{x^2+1}=2\sqrt{\dfrac{x}{2}}\)

\(\Leftrightarrow x^2+1=2x\)

\(\Leftrightarrow x=1\)


Các câu hỏi tương tự
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết