Phần a bài này làm tương tự như phần trước mà mk giải cho bạn á cái này nè☺️☺️☺️
Phần a bài này làm tương tự như phần trước mà mk giải cho bạn á cái này nè☺️☺️☺️
Please help me, chiều nay 5h tui đi học rùi . Giải giúp tui ik mừ.
Giải phương trình :
\(a,\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
\(b,\sqrt{x+2+2\sqrt{x+1}}+\sqrt{x+10-6\sqrt{x+1}}=2\sqrt{x+2-2\sqrt{x+1}}\)
\(c,\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x+\frac{3}{2}\)
1.Rút gọn: A= \(\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
2.Giải phương trình
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\left\{{}\begin{matrix}\sqrt{x+3y}+\sqrt{x+y}=2\\\sqrt{x+y}+y-x=1\end{matrix}\right.\)
gấp lắm, ai giúp với
Giải phương trình :
a,\(\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}=2\)
b,\(\sqrt{2x-1+2\sqrt{x^2-x}}+\sqrt{2x-1-2\sqrt{x^2-x}}=5\) với \(x\frac{>}{ }1\)
c,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
\[D=\left ( \frac{1}{3\sqrt{x}-6} +\frac{1}{x-2\sqrt{x}}\right )\left ( \frac{1}{6} +\frac{1}{2\sqrt{x}}\right )\\ D=\left ( \frac{1}{3\left ( \sqrt{x}-2 \right )} +\frac{1}{\sqrt{x}\left ( \sqrt{x}-2 \right )}\right ).\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\sqrt{x}+3}{3\sqrt{x}\left ( \sqrt{x}-2 \right )}.\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\left ( \sqrt{x}+3 \right )^{2}}{18x\left ( \sqrt{x}-2 \right )}\\ D=\frac{x+6\sqrt{x}+9}{18x\sqrt{x}-36x}\]
A/ Đúng
B/ Sai
giải phương trình
1)\(\sqrt{x+4}-\sqrt{1-x}=1\)
2)\(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
Rút gọn biểu thức:
a) \(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\left(x\ge0,x\ne1\right)\)
b) \(B=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x-3}\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\left(x>0,x\ne9\right)\)
c) \(C=\frac{2\sqrt{x}-9}{x-5+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4,x\ne9\right)\)
Bài 1. Thực hiện phép tính
a) \(\sqrt{5+\sqrt{21}}-\sqrt{5-\sqrt{21}}\) b) \(\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{2}+\sqrt{3}}\)
c) \(\frac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}\)
Bài 2. Giải phương trình:
a) \(\sqrt{x^2-x-2}-\sqrt{x-2}=0\) b) \(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)
c) \(\sqrt{x^2-1}+1=x^2\) d) \(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=4\)
e) \(2^3\sqrt{1-2x}+6=0\)
cần gấp lắm, xíu ik hok rồi, mn giúp vs
1. Tính:
a) \(\sqrt{243}-\frac{1}{2}\sqrt{12}-2\sqrt{75}+\sqrt{27}\)
b) \(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{5}{1+\sqrt{6}}-6\sqrt{\frac{1}{6}}\)
2. Rút gọn: \(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)
giải phương trình:
a/\(\frac{\sqrt{x}-2}{\sqrt{x}-5}=\frac{\sqrt{x}-4}{\sqrt{x}-6}\)
b/\(\sqrt{18x+9}-\sqrt{8x+4}+\frac{1}{3}\sqrt{2x+1}=4\)
c/\(\sqrt{4x-8}-\frac{1}{2}\sqrt{x-2}+\sqrt{9x-18}=9\)