Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Linh

Giai phương trình :

a) \(\sqrt{x+3}=1+\sqrt{2}\)

b) \(\sqrt{10+\sqrt{5x}}=\sqrt{6}+2\)

c) \(\sqrt{x^2-16}-\sqrt{x-4}=0\)

d) \(x-6\sqrt{x}+5=0\)

e) \(\sqrt{x-3}>hoặc=7\)

g) \(\sqrt{x+1}< hoặc=3\)

Akai Haruma
23 tháng 5 2018 lúc 19:28

a) ĐKXĐ: \(x\geq -3\)

Ta có: \(\sqrt{x+3}=1+\sqrt{2}\)

\(\Rightarrow x+3=(1+\sqrt{2})^2\)

\(\Leftrightarrow x+3=1+2+2\sqrt{2}=3+2\sqrt{2}\)

\(\Leftrightarrow x=2\sqrt{2}\) (thỏa mãn)

Vậy \(x=2\sqrt{2}\)

b) ĐK: \(x\geq 0\)

Có: \(\sqrt{10+\sqrt{5x}}=\sqrt{6}+2\)

\(\Rightarrow 10+\sqrt{5x}=(\sqrt{6}+2)^2=6+4+4\sqrt{6}\)

\(\Leftrightarrow \sqrt{5x}=4\sqrt{6}=\sqrt{96}\)

\(\Leftrightarrow x=\frac{96}{5}\) (thỏa mãn)

Vậy.....

c) ĐK: \(x\geq 4\)

Ta có: \(\sqrt{x^2-16}-\sqrt{x-4}=0\)

\(\Leftrightarrow \sqrt{(x-4)(x+4)}-\sqrt{x-4}=0\)

\(\Leftrightarrow \sqrt{x-4}(\sqrt{x+4}-1)=0\)

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-4}=0\\ \sqrt{x+4}=1\end{matrix}\right. \Leftrightarrow \left[\begin{matrix} x=4\\ x=-3\end{matrix}\right.\) (loại $x=-3$ vì $x\geq 4$)

Vậy \(x=4\)

Akai Haruma
23 tháng 5 2018 lúc 19:36

d) ĐK: \(x\ge 0\)

Ta có: \(x-6\sqrt{x}+5=0\)

\(\Leftrightarrow (x-\sqrt{x})-5(\sqrt{x}-1)=0\)

\(\Leftrightarrow \sqrt{x}(\sqrt{x}-1)-5(\sqrt{x}-1)=0\)

\(\Leftrightarrow (\sqrt{x}-5)(\sqrt{x}-1)=0\)

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x}-5=0\\ \sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=25\\ x=1\end{matrix}\right.\) (đều t/m)

e) ĐK: \(x\geq 3\)

\(\sqrt{x-3}\geq 7\)

\(\Leftrightarrow x-3\geq 49\)

\(\Leftrightarrow x\geq 52\). Kết hợp với ĐK suy ra \(x\geq 52\)

f) ĐK: \(x\geq -1\)

Ta có: \(\sqrt{x+1}\leq 3\)

\(\Leftrightarrow x+1\leq 9\)

\(\Leftrightarrow x\leq 8\)

Kết hợp với ĐK suy ra \(-1\leq x\leq 8\)


Các câu hỏi tương tự
Bành Thụy Hóii
Xem chi tiết
Nguyễn Kim Chi
Xem chi tiết
Nguyễn Phương Oanh
Xem chi tiết
Selena Nguyễn
Xem chi tiết
Ánh Dương
Xem chi tiết
_san Moka
Xem chi tiết
nguyễn thái hồng duyên
Xem chi tiết
Hà Thắng
Xem chi tiết
Trần Thị Hảo
Xem chi tiết