a: =>|x-3|=2
=>x-3=2 hoặc x-3=-2
=>x=1 hoặc x=5
c: =>căn x^2-4=căn x-2
=>x^2-4=x-2 và x>=2
=>x^2-x-2=0 và x>=2
=>x=2
a: =>|x-3|=2
=>x-3=2 hoặc x-3=-2
=>x=1 hoặc x=5
c: =>căn x^2-4=căn x-2
=>x^2-4=x-2 và x>=2
=>x^2-x-2=0 và x>=2
=>x=2
Giải các phương trình vô tỉ (Phương trình có chứa căn thức)
1) \(\sqrt{x^2-20x+100}=10\)
2) \(\sqrt{x+2\sqrt{x}+1}=6\)
3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)
5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)
6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)
7) \(\sqrt{2x^2-2x\sqrt{6}+3}-\sqrt{5-\sqrt{24}}=0\)
8) \(\sqrt{3-2\sqrt{2}}-\sqrt{x^2-2x\sqrt{2}+2}=0\)
9) \(\sqrt{11-\sqrt{120}}=\sqrt{5x^2+x\sqrt{120}+6}\)
Giải phương trình
a, \(\sqrt{x^2-x+9}=2x+1\)
b. \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)
c. \(x^2-3x-10+3\sqrt{x.\left(x-3\right)}=0\)
d. \(\sqrt{2-x}+\sqrt{4-x}=x^2-6x+11\)
e. \(x+6\sqrt{x+8}+4\sqrt{6-2x}=27\)
Giải phương trình:
a) \(\sqrt{x^2-6x+9}+x=11\)
b) \(\sqrt{3x^2-4x+3}=1-2x\)
c) \(\sqrt{x-3}-2\sqrt{x^2-9}=0\)
d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
e) \(\sqrt{x+4\sqrt{x-4}}=2\)
Giải các phương trình sau:
a) \(\sqrt{x^2-9}-\sqrt{x^2-6x+9}=0\)
b) \(\sqrt{x^2-4}-x^2+4=0\)
c) \(\sqrt{2x-1}=x-3\)
Giải phương trình \(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
\(\sqrt{6-x}+\sqrt{x+2}=x^2-6x+13\)
\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)
Bài 1: Giải PT
a) \(\sqrt{x^2-1}-x^2+1=0\)
b) \(\sqrt{x^2-4}-x+2=0\)
c) \(\sqrt{x^4-8x^2+16}=2-x\)
d) \(\sqrt{9x^2+6x+1}\sqrt{11-6\sqrt{2}}\)
e) \(\sqrt{4^2-9}=2\sqrt{2x+3}\)
f) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
giải các phương trình sau:
\(\)1, \(\sqrt{10-x}+\sqrt{x+3}\)=5
2, \(\sqrt{15-x}+\sqrt{3-x}\)=6
3, \(\sqrt{4x+1}-\sqrt{3x+4}=1\)
4, \(\sqrt{x+\sqrt{2x-1}}\)+\(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
5, \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
giải phương trình:
a/\(\frac{\sqrt{x}-2}{\sqrt{x}-5}=\frac{\sqrt{x}-4}{\sqrt{x}-6}\)
b/\(\sqrt{18x+9}-\sqrt{8x+4}+\frac{1}{3}\sqrt{2x+1}=4\)
c/\(\sqrt{4x-8}-\frac{1}{2}\sqrt{x-2}+\sqrt{9x-18}=9\)
Giải pt:
\(a)x^{4}-2\sqrt{2}x^{2}+2=\sqrt{2}+x \\b)(2x+3)\sqrt{x^{2}-2}=2x^{2}+3x-4 \\c)2x^{2}+2(x+1)\sqrt{x^{2}-1}-6x+1=0\)