Giải phương trình
a/ \(\sqrt{2x+1}\) =\(\dfrac{1}{x}\)
b/ \(\sqrt{x+1}\) = x+1
c/ \(\sqrt{x-1}\) = 1-x
d/ 2x + 3 + \(\dfrac{4}{x-1}\) = \(\dfrac{x^2+3}{x-1}\)
e/ \(\dfrac{x+1}{\sqrt{2x^2+1}}\) = 3x2 + x +1
d/ x-\(\sqrt{3-x}\) = \(\sqrt{x-3}\) +3
e/ x2 -\(\sqrt{2-x}\) = 3 + \(\sqrt{x-4}\)
f/ x2 + \(\sqrt{-x-1}\) = 4 + \(\sqrt{-x-1}\)
b: ĐKXĐ: x>=-1
\(\sqrt{x+1}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(x+1\right)^2=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\cdot x=0\\x>=-1\end{matrix}\right.\Leftrightarrow x\in\left\{0;-1\right\}\)
c: \(\sqrt{x-1}=1-x\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1>=0\\1-x< =0\end{matrix}\right.\Leftrightarrow x=1\)
Do đó: x=1 là nghiệm của phương trình
d: \(2x+3+\dfrac{4}{x-1}=\dfrac{x^2+3}{x-1}\)(ĐKXĐ: x<>1)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)+4=x^2+3\)
\(\Leftrightarrow2x^2-2x+3x-3+4-x^2-3=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>x=-2(nhận) hoặc x=1(loại)