ĐKXĐ: \(\left[{}\begin{matrix}x\ge\dfrac{\sqrt{7}+4}{2}\\x\le\dfrac{-\sqrt{7}-4}{2}\end{matrix}\right.\)
phương trình tương đương
\(\left(1-3x\right)^2+\left(x-1\right)=\left(2-x\right)\sqrt{\left(2-x\right)\left(1-3x\right)-\left(x-1\right)}\) (1)
Đặt \(\left\{{}\begin{matrix}u=1-3x\\v=\sqrt{\left(2-x\right)\left(1-3x\right)-\left(x-1\right)}\end{matrix}\right.\)
từ (1) ta có
\(u^2=\left(2-x\right)v-\left(x-1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}u^2=\left(2-x\right)v-\left(x-1\right)\\v^2=\left(2-x\right)u-\left(x-1\right)\end{matrix}\right.\)
lấy hai phương trình trên trừ vế theo vế ta được
\(\left(u-v\right)\left(u+v\right)+\left(2-x\right)\left(u-v\right)=0\)
\(\Leftrightarrow\left(u-v\right)\left(u+v+2-x\right)=0\)
Với \(u=v\Rightarrow1-3x=\sqrt{3x^2-8x+3}\)=> x=......
với \(v=x-2-u\Rightarrow\sqrt{3x^2-8x+3}=3x^2-3\)\(\Rightarrow x=...\)