Bài 5: Phương trình chứa ẩn ở mẫu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyennn

giải phương trình 1/x^2+1/(x+1)^2=15. Mn giúp mik nha

Nguyễn Lê Phước Thịnh
1 tháng 2 2021 lúc 17:17

ĐKXĐ: \(x\notin\left\{0;-1\right\}\)

Ta có: \(\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}=15\)

\(\Leftrightarrow\left(\dfrac{1}{x}\right)^2+\left(\dfrac{1}{x+1}\right)^2=15\)

\(\Leftrightarrow\left(\dfrac{1}{x}\right)^2+\left(\dfrac{1}{x+1}\right)^2-\dfrac{2}{x\left(x+1\right)}+\dfrac{2}{x\left(x+1\right)}=15\)

\(\Leftrightarrow\left(\dfrac{1}{x}-\dfrac{1}{x+1}\right)^2+\dfrac{2}{x\left(x+1\right)}=15\)

\(\Leftrightarrow\left(\dfrac{x+1}{x\left(x+1\right)}-\dfrac{x}{x\left(x+1\right)}\right)^2+\dfrac{2}{x\left(x+1\right)}=15\)

\(\Leftrightarrow\left(\dfrac{1}{x\left(x+1\right)}\right)^2+\dfrac{2}{x\left(x+1\right)}=15\)

\(\Leftrightarrow\dfrac{1}{x^2\cdot\left(x+1\right)^2}+\dfrac{2}{x\left(x+1\right)}-15=0\)(1)

Đặt \(\dfrac{1}{x\left(x+1\right)}=a\)(Điều kiện: \(x\notin\left\{0;-1\right\}\)

(1)\(\Leftrightarrow a^2+2a-15=0\)

\(\Leftrightarrow a^2+5a-3a-15=0\)

\(\Leftrightarrow a\left(a+5\right)-3\left(a+5\right)=0\)

\(\Leftrightarrow\left(a+5\right)\left(a-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+5=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-5\\a=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{x\left(x+1\right)}=-5\\\dfrac{1}{x\left(x+1\right)}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=-\dfrac{1}{5}\\x\left(x+1\right)=\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+\dfrac{1}{5}=0\\x^2+x-\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{20}=0\\x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{7}{12}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{20}\\\left(x+\dfrac{1}{2}\right)^2=\dfrac{7}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{\sqrt{5}}{10}\\x+\dfrac{1}{2}=-\dfrac{\sqrt{5}}{10}\\x+\dfrac{1}{2}=\dfrac{\sqrt{21}}{6}\\x+\dfrac{1}{2}=-\dfrac{\sqrt{21}}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{5}}{10}\left(nhận\right)\\x=\dfrac{-5-\sqrt{5}}{10}\left(nhận\right)\\x=\dfrac{-3+\sqrt{21}}{6}\left(nhận\right)\\x=\dfrac{-3-\sqrt{21}}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{-5+\sqrt{5}}{10};\dfrac{-5-\sqrt{5}}{10};\dfrac{-3+\sqrt{21}}{6};\dfrac{-3-\sqrt{21}}{6}\right\}\)


Các câu hỏi tương tự
Dii Quèngg
Xem chi tiết
amyen2107@gmail.com
Xem chi tiết
Lâm Khánh Huyền
Xem chi tiết
Do Ha Anh Kiet
Xem chi tiết
Nhi Mỹ
Xem chi tiết
Hương Lê
Xem chi tiết
Trương Gia Phong
Xem chi tiết
Hà Lê Yến Nhi
Xem chi tiết
Linh Yoo
Xem chi tiết