ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
Ta có: \(\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}=15\)
\(\Leftrightarrow\left(\dfrac{1}{x}\right)^2+\left(\dfrac{1}{x+1}\right)^2=15\)
\(\Leftrightarrow\left(\dfrac{1}{x}\right)^2+\left(\dfrac{1}{x+1}\right)^2-\dfrac{2}{x\left(x+1\right)}+\dfrac{2}{x\left(x+1\right)}=15\)
\(\Leftrightarrow\left(\dfrac{1}{x}-\dfrac{1}{x+1}\right)^2+\dfrac{2}{x\left(x+1\right)}=15\)
\(\Leftrightarrow\left(\dfrac{x+1}{x\left(x+1\right)}-\dfrac{x}{x\left(x+1\right)}\right)^2+\dfrac{2}{x\left(x+1\right)}=15\)
\(\Leftrightarrow\left(\dfrac{1}{x\left(x+1\right)}\right)^2+\dfrac{2}{x\left(x+1\right)}=15\)
\(\Leftrightarrow\dfrac{1}{x^2\cdot\left(x+1\right)^2}+\dfrac{2}{x\left(x+1\right)}-15=0\)(1)
Đặt \(\dfrac{1}{x\left(x+1\right)}=a\)(Điều kiện: \(x\notin\left\{0;-1\right\}\)
(1)\(\Leftrightarrow a^2+2a-15=0\)
\(\Leftrightarrow a^2+5a-3a-15=0\)
\(\Leftrightarrow a\left(a+5\right)-3\left(a+5\right)=0\)
\(\Leftrightarrow\left(a+5\right)\left(a-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+5=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-5\\a=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{x\left(x+1\right)}=-5\\\dfrac{1}{x\left(x+1\right)}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=-\dfrac{1}{5}\\x\left(x+1\right)=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+\dfrac{1}{5}=0\\x^2+x-\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{20}=0\\x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{7}{12}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{20}\\\left(x+\dfrac{1}{2}\right)^2=\dfrac{7}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{\sqrt{5}}{10}\\x+\dfrac{1}{2}=-\dfrac{\sqrt{5}}{10}\\x+\dfrac{1}{2}=\dfrac{\sqrt{21}}{6}\\x+\dfrac{1}{2}=-\dfrac{\sqrt{21}}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{5}}{10}\left(nhận\right)\\x=\dfrac{-5-\sqrt{5}}{10}\left(nhận\right)\\x=\dfrac{-3+\sqrt{21}}{6}\left(nhận\right)\\x=\dfrac{-3-\sqrt{21}}{6}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{-5+\sqrt{5}}{10};\dfrac{-5-\sqrt{5}}{10};\dfrac{-3+\sqrt{21}}{6};\dfrac{-3-\sqrt{21}}{6}\right\}\)