Giải hpt: \(\left\{{}\begin{matrix}y^2+5=5\sqrt{x}\\\sqrt{x+2}+\dfrac{1}{5}y^2=\sqrt{y^2+2y+3}+y\end{matrix}\right.\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^3+y^3\right)=280\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x}{y}}+\sqrt{\dfrac{2y}{x}}=3\\x-y+xy=3\end{matrix}\right.\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}\sqrt{y}\left(\sqrt{x}+\sqrt{x+3}\right)=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x^2+x=y^2+y\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\)
Giải hệ phương trình
a,\(\left\{{}\begin{matrix}1+4x^2y^2+5xy=10x^2\\1-2xy+3y=2x\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\sqrt{x+1}\sqrt{y+1}=\sqrt{4-x+5y}\\x^2+y+2=\sqrt{5\left(2x-y+1\right)}+\sqrt{3x+2}\end{matrix}\right.\)
giải hệ pt :
\(\left\{{}\begin{matrix}\left(x+\sqrt{x^2+4}\right)\left(y+\sqrt{y^2+1}\right)=1\\27x^6=x^3-8y+2\end{matrix}\right.\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3-30=0\\x^2y+x\left(1+y+y^2\right)+y-11=0\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}3xy+2y=5\\2xy\left(x+y\right)+y^2=5\end{matrix}\right.\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}3y=\dfrac{y^2+2}{x^2}\\3x=\dfrac{x^2+2}{y^2}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^2y+xy^2+x-5y=0\\2xy+y^2-5y+1=0\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy+2y+x=2\\2x^2-y^2-2y-2=0\end{matrix}\right.\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^2+xy+y^2=3\\x+xy+y=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3-y^3=7\left(x-y\right)\\x^2+y^2=x+y+2\end{matrix}\right.\)
Ai giúp em với ạ... em đang cần gấp ạ !!! em cảm ơn !
Câu 1: Giải phương trình cos2x-2sin23x+1=0
Câu 2: Giải hệ: \(_{^{ }\frac{ }{ }\frac{ }{ }\frac{ }{ }\left\{{}\begin{matrix}\frac{2\left(x^3+y^3\right)}{xy}-\frac{3\left(x^{ }^2+y^2\right)}{\sqrt{xy}}+5\left(x+y\right)=8\sqrt{xy}\\\sqrt{5x-1}+\sqrt{2-y}=\frac{5x+y}{2}\end{matrix}\right.\)
Câu 3: Tìm nghiệm nguyên dương của phương trình: 2(x+y)+16=3xy
Giải hệ phương trình bằng phương pháp lượng giác hóa:
\(\left\{{}\begin{matrix}\left(2-x\right).\left(2+y\right)=8\\x\sqrt{4-y^2}+y\sqrt{4-x^2}=4\end{matrix}\right.\)