giải hpt:
\(\left\{{}\begin{matrix}\left(2x+3y-2\right)\left(x-5y-3\right)=0\\x-3y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x-1\right).6+\left(y-2\right).\left(-2\right)=0\\\left(x+1\right).4+\left(y-1\right).\left(-3\right)=0\end{matrix}\right.\)
Giải hpt
1.Giải hpt : a,\(\left\{{}\begin{matrix}\left(x+y+3\right)\sqrt{x-2y}+2y+4=0\\\left(x-y\right)\left(x^2+4\right)=y^2+1\end{matrix}\right.\)
a)\(\left\{{}\begin{matrix}2\left|x-6\right|+3\left|y-1\right|=5\\5\left|x-6\right|-4\left|y+1\right|=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2\left|x+y\right|-\left|x-y\right|=9\\3\left|x+y\right|+2\left|x-y\right|+17\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}4\left|x+y\right|+3\left|x-y\right|=8\\3\left|x+y\right|-5\left|x-y\right|=6\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x^2-xy=24\\2x-3y=1\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}3x-4y+1=0\\xy=3\left(x+y\right)-9\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}2x+3y=5\\3x^2-y^2+2y=4\end{matrix}\right.\)
1/ Giải hpt = p đặt ẩn phụ : a,\(\left\{{}\begin{matrix}\left(x+y\right)^3+y=5\\3\left(x+y\right)^3-22xy+21=11x^2+12y^3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}81x^3y^2-81x^2y^2+33xy^2-29y^2=4\\25y^3+9x^2y^3-6xy^3-4y^2=24\end{matrix}\right.\)
Giải hệ phương trình:
a) \(\left\{\begin{matrix}2x^2-15xy+4y^2-12x+45y-24=0y^2\\x^2+xy-2y^2-3x-3y=0\end{matrix}\right.\)
b) \(\left\{\begin{matrix}3\left|x-3\right|+5y+9=0\\2x-\left|y+4\right|-7=0\end{matrix}\right.\)
Giải hệ
a) \(\left\{{}\begin{matrix}x^2\left(y^2+1\right)+2y\left(x^2+x+1\right)=3\\\left(x^2+x\right)\left(y^2+y\right)=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(6x+5\right)\sqrt{2x+1}-2y-3y^3=0\\y+\sqrt{x}=\sqrt{2x^2+4x-23}\end{matrix}\right.\)
Giải bất pt
\(\dfrac{9}{\left|x-5\right|-3}\ge\left|x-2\right|\)
giải hpt:
a) \(\left\{{}\begin{matrix}4x+9y=6\\3x^2+6xy-x+3y=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x+y+2\right)\left(2x+2y-1\right)=0\\3x^2-32y^2+5=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}2x^2-xy+3y^2=7x+12y-1\\x-y+1=0\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(x+y-3\right)^3=4y^3\left(x^2y^2+xy+\frac{45}{4}\right)\\x+4y-3=2xy^2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+7y=\left(x+y\right)^2+x^2y+7x+4\\3x^2+y^2+8y+4=8x\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}2x+5y=xy+2\\x^2+4y+21=y^2+10x\end{matrix}\right.\)