Bài 1: Phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thành Phát

Giải hpt: \(\begin{cases} x+y+\dfrac{1}{x}+\dfrac{1}{y}= \dfrac{9}{2}\\ xy+\dfrac{1}{xy}=\dfrac{5}{2} \end{cases} \)

Mai Thành Đạt
24 tháng 6 2017 lúc 10:10

gọi HPT trên là (1)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{x+y}{xy}=\dfrac{9}{2}\\xy+\dfrac{1}{xy}=\dfrac{5}{2}\end{matrix}\right.\)

Đặt x+y=a;xy=b(b#0).HPT trở thành:

\(\left\{{}\begin{matrix}a+\dfrac{a}{b}=\dfrac{9}{2}\left(!\right)\\b+\dfrac{1}{b}=\dfrac{5}{2}\left(!!\right)\end{matrix}\right.\)

Giải PT (!!) ta được \(b_1=2;b=\dfrac{1}{2}\)

TH1: Với b=2 thay vào (!)=>a=3

=> x+y=3 và xy=2 => x=2;y=1.

TH2: Với b=1/2 thay vào (!)=> a=3/2

=> x+y=3/2 và xy=1/2 => x=1 và y=1/2.

Vậy \(\left(x;y\right)=\left\{\left(2;1\right);\left(1;\dfrac{1}{2}\right)\right\}\)


Các câu hỏi tương tự
Nguyễn Thị Anh Quỳnh
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Mộc Lung Hoa
Xem chi tiết
Nguyễn Thị Anh Quỳnh
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Xuân Nhi Cao Hoàng
Xem chi tiết
Nguyễn Khánh Ly
Xem chi tiết
phan thị minh anh
Xem chi tiết
Nhật Minh
Xem chi tiết