\(E=4x-x^2+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\)
Vì: \(-\left(x-2\right)^2\le0\)
=> \(-\left(x-2\right)^2+5\le5\)
Vậy GTLN của E là 5 khi x=2
\(F=-x^2+3x+2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{17}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\)
Vì: \(-\left(x-\frac{3}{2}\right)^2\le0\)
=> \(-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\)
Vậy GTLN của F là \(\frac{17}{4}\) khi \(x=\frac{3}{2}\)
\(G=3-10x^2-4xy-4y^2=-\left(x^2+4xy+4y^2\right)-9x^2+3=-\left(x-2y\right)^2-9x^2+3\)
Vì: \(-\left(x-2y\right)^2-9x^2\le0\)
=> \(-\left(x-2y\right)^2-9x^2+3\le3\)
Vậy GTLN của G là 3 khi x=y=0
\(H=-x^2-2y^2+2xy-y+1=-\left(x^2-2xy+y^2\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{5}{4}\)
\(=-\left(x-y\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{5}{4}\)
Vì: \(-\left(x-y\right)^2-\left(y-\frac{1}{2}\right)^2\le0\)
=> \(-\left(x-y\right)^2-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Vậy GTLN của H là \(\frac{5}{4}\) khi \(x=y=\frac{1}{2}\)