Giai hệ phương trình: \(\left\{{}\begin{matrix}x^2\sqrt{y+1}-2xy-2x=1\\x^3-3x-3xy=6\end{matrix}\right.\)
giải hệ pt:
(1) \(\left\{{}\begin{matrix}x^2-3xy+2y^2=0\\3x+y=6\end{matrix}\right.\)
(2)\(\left\{{}\begin{matrix}\dfrac{x-1}{2x+1}-\dfrac{y-2}{y+2}=1\\\dfrac{3x-3}{2x+1}+\dfrac{2y-4}{y+2}=3\end{matrix}\right.\)
(3)\(\left\{{}\begin{matrix}2\left(x+y\right)+\sqrt{x+1}=4\\x+y-3\sqrt{x+1}=-5\end{matrix}\right.\)
giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}+\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=4\end{matrix}\right.\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}x^2+y^2+x+y=8\\2x^2+y^2-3xy+3x-2y+1=0\end{matrix}\right.\)
giải hệ phương trình
\(a,\left\{{}\begin{matrix}\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\\y+\frac{y}{\sqrt{x^2-1}}=\frac{35}{12}\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}2x^2+3xy-2y^2-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x+2y^2=6\\2x^2+y^2+1=2xy\end{matrix}\right.\)
Giải hệ phương trình:
a, \(\left\{{}\begin{matrix}\sqrt{2x+3}+\sqrt{4-y}=4\\\sqrt{2y+3}+\sqrt{4-y}=4\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}2y=\dfrac{y^2+1}{x^2}\\2x=\dfrac{x^2+1}{y^2}\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}2x^2+y^2-3xy=12\\2\left(x+y\right)^2-y^2=14\end{matrix}\right.\)
Giải hệ phương trình:
\(a,\left\{{}\begin{matrix}2x^3+x^2y+2x^2+xy+6=0\\x^2+3x+y=1\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}x^2=\left(2-y\right)\left(2+y\right)\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}\sqrt[3]{x+2y}=4-x-y\\\sqrt[3]{x+6}+\sqrt{2y}=2\end{matrix}\right.\)
Giải các hệ phương trình:
a, \(\left\{{}\begin{matrix}-2x+y=xy\\2x+3y=2xy\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}\left(\sqrt{2}+1\right)x-\left(2-\sqrt{3}\right)y=2\\\left(2+\sqrt{3}\right)x+\left(\sqrt{2}-1\right)y=2\end{matrix}\right.\)