=>4x+4y+y=6 và 3x+3y+y=8
=>4x+5y=6 và 3x+4y=8
=>12x+15y=18 và 12x+16y=32
=>-y=-14 và 4x+5y=6
=>y=14 và 4x=6-5y=6-70=-64
=>x=-16 và y=14
=>4x+4y+y=6 và 3x+3y+y=8
=>4x+5y=6 và 3x+4y=8
=>12x+15y=18 và 12x+16y=32
=>-y=-14 và 4x+5y=6
=>y=14 và 4x=6-5y=6-70=-64
=>x=-16 và y=14
Giải hệ phương trình sau bằng phương pháp thế
1) \(\left\{{}\begin{matrix}x-2y=4\\-2x+5y=-3\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x+2y=4\\-3x+y=7\end{matrix}\right.\)
Giải hệ phương trình sau bằng phương pháp thế
a)
\(\left\{{}\begin{matrix}\sqrt{5}+2)x+y=3-\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\)
b)
\(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-5y\right)-12\end{matrix}\right.\)
Bài 2: Giải các hệ phương trình sau bằng phương pháp thế
a) \(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3x-2y=11\\4x-5y=3\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}5x-4y=3\\2x+y=4\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}3x-y=5\\5x+2y=28\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x-2y=1\\2x-y=4\end{matrix}\right.\)
Bµi 1: A)\(\left\{{}\begin{matrix}X=35.\left(Y+2\right)\\X=50.\left(Y-1\right)\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}Y=2X-3\\Y=X-1\end{matrix}\right.\)
C) \(\left\{{}\begin{matrix}\left(X+14\right).\left(Y-2\right)=X.Y\\\left(X-4\right).\left(Y+1\right)=X.Y\end{matrix}\right.\)
D)\(\left\{{}\begin{matrix}Y=\frac{6-X}{4}\\Y=\frac{4X-5}{3}\end{matrix}\right.\)GIẢI BÀI 1 BẰNG PHƯƠNG PHAP THẾ
Giải hệ phương trình
a)\(\left\{{}\begin{matrix}6x^2-3xy+x=1-y\\x^2+y^2=1\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}\left|x+1\right|+\left|y-1\right|=5\\\left|x+1\right|-4y+4=0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2x^2-2x+xy-y=0\\x^2-3xy+4=0\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}4\left(2x-y+3\right)-3\left(x-2y+3\right)=48\\3\left(3x-4y+3\right)+4\left(4x-2y-9\right)=48\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-2\left(2x+1\right)+1,5=3\left(y-2\right)-6x\\11,5-4\left(3-x\right)=2y-\left(5-x\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{8x-5y-3}{7}+\dfrac{11y-4x-7}{5}=12\\\dfrac{9x+4y-13}{5}-\dfrac{3\left(x-2\right)}{4}=15\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\sqrt{3}x-\sqrt{5}y=2\sqrt{6}-\sqrt{15}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
giải hệ pt bằng phương pháp thế:
a,\(\left\{{}\begin{matrix}3x+y=-2\\-9x-39=6\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x+y=101\\-x+y=-1\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x+y=2\\\dfrac{1}{2}x+y=\dfrac{5}{4}\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x-5y=16\\10y-2x=-32\end{matrix}\right.\)
Giải các hệ phương trình sau bằng phương pháp thế :
a) \(\left\{{}\begin{matrix}4x+5y=3\\x-3y=5\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}7x-2y=1\\3x+y=6\end{matrix}\right.\);
c) \(\left\{{}\begin{matrix}1,3x+4,2y=12\\0,5x+2,5y=5,5\end{matrix}\right.\);
d) \(\left\{{}\begin{matrix}\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\).
Giải các hệ phương trình sau bằng phương pháp thế:
a\(\left\{{}\begin{matrix}x+3y=4\\4x=5y=18\end{matrix}\right.\)
b\(\left\{{}\begin{matrix}5x-3y=5\\2x+5y=33\end{matrix}\right.\)
c\(\left\{{}\begin{matrix}\frac{x}{2}-\frac{y}{3}=0\\5x+y=13\end{matrix}\right.\)
d\(\left\{{}\begin{matrix}x+2y=\frac{7}{6}\\4x+6y=4\end{matrix}\right.\)