a/ \(\left\{{}\begin{matrix}\left(2x+y\right)^2-5\left(4x^2-y^2\right)+6\left(2x-y\right)^2=0\\2x+y+\dfrac{1}{2x-y}=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}2x+y=a\\2x-y=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-5ab+6b^2=0\left(1\right)\\a+\dfrac{1}{b}=3\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\Leftrightarrow\left(2b-a\right)\left(3b-a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\a=3b\end{matrix}\right.\)
Thế vô (2) làm tiếp sẽ ra
b/ \(\left\{{}\begin{matrix}2x^3+y\left(x+1\right)=4x^2\left(1\right)\\5x^4-4x^6=y^2\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\Leftrightarrow2x^3+y=4x^2-xy\)
\(\Leftrightarrow4x^6+4x^3y+y^2=16x^4-8x^3y+x^2y^2\)
\(\Leftrightarrow4x^6+4x^3y+5x^4-4x^6=16x^4-8x^3y+x^2y^2\)
\(\Leftrightarrow11x^4-12x^3y+x^2y^2=0\)
\(\Leftrightarrow x^2\left(11x^2-12xy+y^2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\11x^2-12xy+y^2=0\end{matrix}\right.\)
Tới đây thì đơn giản rồi làm nốt nhé.