Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dam thu a

giải hệ

\(\left\{{}\begin{matrix}x^3+y^3=1+y-x+xy\\7xy+y-x=7\end{matrix}\right.\)

Ânn Thiênn
23 tháng 2 2020 lúc 16:27

Cộng vế vs vế của 2 phương trình ta được :

\(x^3+y^3+6xy=8\Leftrightarrow\left(x+y-2\right)\left(\frac{3\left(x-y\right)^2}{4}\right)+\left(\frac{\left(x+y\right)^2}{4}\right)+2\left(x+y\right)+4=0\)

Tới đây ta xét 2 TH : +) \(x+y=2\) bạn chắc tự giải được

\(\frac{3\left(x-y\right)^2}{4}+\frac{\left(x+y\right)^2}{4}+2\left(x+y\right)+4=0\)

Ta thấy : \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\frac{\left(x+y\right)^2}{4}+4\ge2|x+y|\ge2\left(x+y\right)\end{matrix}\right.\)

Dấu "=" xảy ra khi :

\(\left\{{}\begin{matrix}x-y=0\\\left(x+y\right)^2=4^2\\x+y< 0\end{matrix}\right.\)

Hay x = y = −2x = y = −2 không thoả mãn hệ phương trình.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
vung nguyen thi
Xem chi tiết
poppy Trang
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Vũ Như Quỳnh
Xem chi tiết