Bạn tự vẽ hình nhé
a) ta có : góc BMD = góc AMC ( 2 góc đối đỉnh )
Xét t/g MAC và t/g MDB có :
\(\left\{{}\begin{matrix}gBMD=gAMC\left(tt\right)\\BM=MC\\MD=MA\end{matrix}\right.\)
=> t/g MAC = t/g MDB ( c-g-c)
vậy ....
b) t/g MAC = t/g MDB (tt)
=> góc BDM = góc MAC ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong => BD // AC
Ta có : BD // AC và ABvuông góc với AC(t/g ABC vuông tại A)
=>A B vuông góc với BD ( theo quan hệ từ vuông góc đến song song)
Vậy ....
c) Ta có : t/g MAC = t/g MDB ( phần a)
=> AC=BD(2 cạnh tương ứng )
xét t/g ABC và t/g BAD có :
góc DBA = góc BAC = 90 độ
BD=AC(tt)
BA chung
=> t/g ABC = t/g BAD ( c-g-c)
=> BC=AD ( 2 cạnh tương ứng )
Mà AM = \(\dfrac{AD}{2}\) => AM=\(\dfrac{BC}{2}\)
Vậy ...