a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
Do đó: ΔABD\(\sim\)ΔACE
b: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)
Do đó: ΔHEB\(\sim\)ΔHDC
Suy ra: HE/HD=HB/HC
hay \(HE\cdot HC=HB\cdot HD\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
Do đó: ΔABD\(\sim\)ΔACE
b: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)
Do đó: ΔHEB\(\sim\)ΔHDC
Suy ra: HE/HD=HB/HC
hay \(HE\cdot HC=HB\cdot HD\)
Cho \(\Delta ABC\) nhọn ( AB<AC) có đường cao BD và CE cắt nhau tại H
a) CM ΔABD∼ΔACE
b) CM : HD.HB=HE.HC
c) AH cắt BC tại F , kẻ FI ⊥ AC tại I . CM \(\frac{\text{IF}}{IC}=\frac{FA}{FC}\)
d) trên tia đối AF lấy N sao cho AN=AF . gọi M là trung điểm của IC . Cm NI ⊥ FM
Cho tam giác ABC có các góc đều nhọn. Các đường cao BD và CE cắt nhau tại H.
a) CM: Tam giác ABD đồng dạng tam giác ACE.
b) CM: HB.HD=HC.HE
c) AH cắt BC tại F. Kẻ FI vuông góc với AC tại I. CM: IF/IC = FA/FC
d) Trên tia đối của tia AF lấy điểm N sao cho AN=AF. Gọi M là trung điểm của IC. CM: NI vuông góc với FM
Cho tan giác ABC nhọn (AB<AC) có hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh: Tam giác ABD~tam giác ACE
b) Chứng minh: HD.HB=HE.HC
c) AH cắt BC tại F. Kẻ FI vuông góc AC tại I. Chứng minh: IF/IC=FA/FC
d) Trên tia đối tia AF lấy điểm N sao cho AN=AF. Gọi M là trung điểm cạnh IC. Chứng minh: NL vuông góc FM
Δ ABC nhọn (AB<AC). Đường cao BD và CE cắt nhau tại H.
a)Chứng minh Δ ABD ∼ ΔACE.
b)Chứng minh HD.HB=HE.HC
c)Cho AH cắt BC tại F (FI ⊥ AC tại I).chứng minh \(\dfrac{IF}{IC}=\dfrac{FA}{FC}\).
d) Trên tia đối của tia AF lấy điểm N sao cho AN=AF, M là trung điểm IC chứng minh NI ⊥ FM
Cho tam giác ABC nhọn ( AB<AC ) có hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh: tam giác ABD đồng dạng tam giác ACE
b) Chứng minh: HD.HB=HE.HC
c) AH cắt BC tại F. Kẻ FI vuông góc AC tại I. Chứng minh: \(\frac{\text{IF}}{IC}=\frac{FA}{CF}\)
d) Trên tia đối của tia AF lấy điểm N sao cho AN=AF. Gọi M là trung điểm cạnh IC. Chứng minh: NI vuông góc FM.
Bài 4: Cho Tam giác ABC nhọn (AB < AC). Kẻ đường cao AH. Từ H kẻ HM vuông góc AC tại M, HN vuông góc AB tại N
a/ CM: ∆ANH ᔕ ∆AHB
b/ CM: AM . AC = AN . AB
c/ Tia MN cắt CB tại I. CM: IB . IC = IN . IM
CÓ AI GIÚP MÌNH CÂU NÀY VỚI Ạ
Cho nhọn ( AB < AC) có 3 đường cao AF, BD, CE cắt nhau tại H.
Chứng minh
Gọi I là hình chiếu của F lên AC. Chứng minh FI.FC = FA.IC
Trên tia đối của tia AF lấy N sao cho A là trung điểm của NF. Gọi M là trung điểm của IC. Chứng minh
Mọi người ơi làm giúp mình bài này với ạ
Cho tam giác ABC nhọn(AB<AC) có 2 đường cao BD và CE cắt nhau tại H.
1.Chứng minh tam giác ABD đồng dạng với tam giác ACE
2. Chứng minh HD.HB= HC.HE
3.AH cắt BC tại F. Kẻ FI vuông góc với AC tại I. Chứng minh IF/IC=FA/CF
4. Trên tia đối của AF lấy điểm N sao cho AN=AF. Gọi M là trung điểmcủa cạnh IC. Chứng minh NI=FM.
Cho △ABC nhọn (AB<AC) có 2 đường cao AD và BE cắt nhau tại H.
a) CM: △HEA \(\sim\) △HDB
b) Kẻ DK \(\perp\) AC tại K. CM : CD2 = CK.CA
c) Gọi N là trung điểm của CK. Trên tia đối của tia AD lấy điểm F sao cho AF = AD. CM: FK \(\perp\) DN tại S