a: Xét ΔHEA vuông tại E và ΔHFC vuông tại F có
góc EHA=góc FHC
=>ΔHEA đồng dạng với ΔHFC
b: Xét ΔCIF vuông tại I và ΔCFA vuông tại F có
góc C chung
=>ΔCIF đồng dạng với ΔCFA
=>CI/CF=IF/FA
=>CI*FA=CF*FI
a: Xét ΔHEA vuông tại E và ΔHFC vuông tại F có
góc EHA=góc FHC
=>ΔHEA đồng dạng với ΔHFC
b: Xét ΔCIF vuông tại I và ΔCFA vuông tại F có
góc C chung
=>ΔCIF đồng dạng với ΔCFA
=>CI/CF=IF/FA
=>CI*FA=CF*FI
Δ ABC nhọn (AB<AC). Đường cao BD và CE cắt nhau tại H.
a)Chứng minh Δ ABD ∼ ΔACE.
b)Chứng minh HD.HB=HE.HC
c)Cho AH cắt BC tại F (FI ⊥ AC tại I).chứng minh \(\dfrac{IF}{IC}=\dfrac{FA}{FC}\).
d) Trên tia đối của tia AF lấy điểm N sao cho AN=AF, M là trung điểm IC chứng minh NI ⊥ FM
Cho tam giác ABC nhọn ( AB<AC ) có hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh: tam giác ABD đồng dạng tam giác ACE
b) Chứng minh: HD.HB=HE.HC
c) AH cắt BC tại F. Kẻ FI vuông góc AC tại I. Chứng minh: \(\frac{\text{IF}}{IC}=\frac{FA}{CF}\)
d) Trên tia đối của tia AF lấy điểm N sao cho AN=AF. Gọi M là trung điểm cạnh IC. Chứng minh: NI vuông góc FM.
Cho tan giác ABC nhọn (AB<AC) có hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh: Tam giác ABD~tam giác ACE
b) Chứng minh: HD.HB=HE.HC
c) AH cắt BC tại F. Kẻ FI vuông góc AC tại I. Chứng minh: IF/IC=FA/FC
d) Trên tia đối tia AF lấy điểm N sao cho AN=AF. Gọi M là trung điểm cạnh IC. Chứng minh: NL vuông góc FM
Cho tam giác ABC nhọn (AB < AC) có hai đường cao AD và BE cắt nhau tại H. a) Chứng minh tam giác HEA đồng dạng tam giác HDB. b) Kẻ DK vuông góc AC tại K. Chứng minh CD2 = CK.CA c) Gọi N là trung điểm của CK. Trên tia đối của tia AD lấy điểm F sao cho AF = AD. Chứng minh FK vuông góc DN tại S.
Cho △ABC nhọn(AB<AC) có 2 đường cao AD và BE cắt nhau tại H
a/Chứng minh △HEA∼△HDB
b/Kẻ DK⊥AC tại K. Chứng minh CD2=CK.CA
c/GỌi N là trung điểm của CK.TRên tia đối của tia AD lấy điểm F sao cho AF=AD.CMR:FK⊥DN tại S
Cho △ABC nhọn (AB<AC) có 2 đường cao AD và BE cắt nhau tại H.
a) CM: △HEA \(\sim\) △HDB
b) Kẻ DK \(\perp\) AC tại K. CM : CD2 = CK.CA
c) Gọi N là trung điểm của CK. Trên tia đối của tia AD lấy điểm F sao cho AF = AD. CM: FK \(\perp\) DN tại S
Cho \(\Delta ABC\) nhọn ( AB<AC) có đường cao BD và CE cắt nhau tại H
a) CM ΔABD∼ΔACE
b) CM : HD.HB=HE.HC
c) AH cắt BC tại F , kẻ FI ⊥ AC tại I . CM \(\frac{\text{IF}}{IC}=\frac{FA}{FC}\)
d) trên tia đối AF lấy N sao cho AN=AF . gọi M là trung điểm của IC . Cm NI ⊥ FM
GIÚP MIK VỚI :(((
Bài 14: Cho∆ABC có ba góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
b) Chứng minh: BK ⊥AB và CK ⊥AC.
c) Gọi I là điểm đối xứng của H qua BC. CMR: Tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G, Tam giác ABC có thêm điều kiện gì để tứ giác GHCK là hình thang cân.
Cho tam giác ABC một đường thẳng song song với cạnh BC cắt AB tại D và AC tại E. Trên tia đối của tia CA lấy điểm F sao cho CF=BD. Gọi M là giao điểm của DF và BC Chứng minh rằng: MD/MF = AC/AB. Cho BC=8cm, BD=5cm, DE=3cm . Chứng minh tam giác ABC cân
Mik đang cần gấp!!!