Bài này sẽ có lời giải nếu sử dụng công thức toán cao cấp.
Bậc THPT không giải quyết những bài toán có nguyên hàm không sơ cấp.
Bài này sẽ có lời giải nếu sử dụng công thức toán cao cấp.
Bậc THPT không giải quyết những bài toán có nguyên hàm không sơ cấp.
1.\(\int\dfrac{\sin2x}{\cos^4x-4}dx\)
2.\(\int\sqrt{1-x^2}dx\)
3.\(\int\dfrac{xdx}{\sqrt{1+x^4}}dx\)
giúp mình với mn
Tính các nguyên hàm sau :
a) \(\int x\left(3-x\right)^5dx\)
b) \(\int\left(2^x-3^x\right)^2dx\)
c) \(\int x\sqrt{2-5x}dx\)
d) \(\int\dfrac{\ln\left(\cos x\right)}{\cos^2x}dx\)
e) \(\int\dfrac{x}{\sin^2x}dx\)
\(\int\dfrac{x+1}{\left(x-2\right)\left(x+3\right)}dx\)
h) \(\int\dfrac{1}{1-\sqrt{x}}dx\)
i) \(\int\sin3x\cos2xdx\)
k) \(\int\dfrac{\sin^3x}{\cos^2x}dx\)
l) \(\int\dfrac{\sin x\cos x}{\sqrt{a^2\sin^2x+b^2\cos^2x}}dx\) (\(a^2\ne b^2\))
Cho \(\int f\left(x\right)dx=x\sqrt{x^2+1}.\: \)Tìm \(I=\int x.f\left(x^2\right)dx\)
Giải giúp em với, em cảm ơn
Tính các nguyên hàm sau bằng phương pháp đổi biến số :
a) \(\int x^2\sqrt[3]{1+x^3}dx\) với \(x>-1\) (đặt \(t=1+x^3\))
b) \(\int xe^{-x^2}dx\) (đặt \(t=x^2\))
c) \(\int\dfrac{x}{\left(1+x^2\right)^2}dx\) (đặt \(t=1+x^2\))
d) \(\int\dfrac{1}{\left(1-x\right)\sqrt{x}}dx\) (đặt \(t=\sqrt{x}\))
e) \(\int\sin\dfrac{1}{x}.\dfrac{1}{x^2}dx\) (đặt \(t=\dfrac{1}{x}\))
g) \(\int\dfrac{\left(\ln x\right)^2}{x}dx\) (đặt \(t=\ln x\))
h) \(\int\dfrac{\sin x}{\sqrt[3]{\cos^2x}}dx\) (đặt \(t=\cos x\) )
i) \(\int\cos x\sin^3xdx\) (đặt \(t=\sin x\))
k) \(\int\dfrac{1}{e^x-e^{-x}}dx\) (đặt \(t=e^x\) )
l) \(\int\dfrac{\cos x+\sin x}{\sqrt{\sin x-\cos x}}dx\) (đặt \(t=\sin x-\cos x\))
tính nguyên hàm
1.\(\int\dfrac{\cos x}{3\sin x-7}dx\)
2. \(\int\sin x.\)e^(2\(\cos x\)+3)dx
3. \(\int\dfrac{\sin x+x\cos x}{\left(x\sin x\right)^2}dx\)
(bằng pp đổi biến)
^
Mọi người giúp mk giải chi tiết câu này với ạ. Mk cảm ơn
Sử dụng phương pháp biến đổi số, hãy tính :
a) \(\int\left(1-x\right)^9dx\) (đặt \(u=1-x\))
b) \(\int x\left(1+x^2\right)^{\dfrac{2}{3}}dx\) (đặt \(u=1+x^2\))
c) \(\int\cos^3x\sin x.dx\) (đặt \(t=\cos x\))
d) \(\int\dfrac{dx}{e^x+e^{-x}+2}\) (đặt \(u=e^x+1\))
Tính :
\(I_1=\int\dfrac{x^2-2x+2}{\sqrt{x^2-2x}}dx\)
\(I_2=\dfrac{dx}{\left(x-1\right)\sqrt{x^2-2x+2}}\)
\(I_3=\dfrac{dx}{\left(2x+1\right)\sqrt{x^2-2x+2}}\)
1, \(\int\dfrac{lnxdx}{\sqrt{x}}\)
2, \(\int ln\left(x+\sqrt{x^2+1}\right)dx\)
3, \(\int\left(x^2+2x+3\right)dx\)