Mọi người ơi làm giúp mình bài này với ạ
Cho tam giác ABC nhọn(AB<AC) có 2 đường cao BD và CE cắt nhau tại H.
1.Chứng minh tam giác ABD đồng dạng với tam giác ACE
2. Chứng minh HD.HB= HC.HE
3.AH cắt BC tại F. Kẻ FI vuông góc với AC tại I. Chứng minh IF/IC=FA/CF
4. Trên tia đối của AF lấy điểm N sao cho AN=AF. Gọi M là trung điểmcủa cạnh IC. Chứng minh NI=FM.
cho tam giác ABC , các đường cao BD,CE cắt nhau tại H
a. chungứ minh Tam giác ADB đồng dạng vs tam giác AEC
b. chứng minh HE.HC=HD.HB
c. đường thẳng vuông óc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau G
Gọi M là TĐ của BC. chứng minh 3 điểm H,M,G thẳng hàng\
vẽ hình lun nge:))
Cho tam giác ABC có góc A < 900. Các đường cao AK, BD, CE cắt nhau tại H.
a) Chứng minh: ABD đồng dạng với ACE
b) Chứng minh: HBC đồng dạng với HED
c) Chứng minh KA là tia phân giác của góc DKE
d) Cho  = 600. Tính tỉ số diện tích của tam giác DHE và diện tích của tam giac HBC.
e) Trên BD lấy điểm I sao cho AI CI, trên CE lấy điểm N sao cho AN BN.Chứng minh tam giác AIN cân
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.
Cho tam giác ABC vuông tại A ( AB<AC) đường cao AH
a/ Chứng minh tam giác BHA đồng dạng tam giác BAC
b/ Vẽ BD là đường phân giác của góc tam giác ABC cắt AH tại K. Chứng minh : BA.BK = BD.BH
c/ Qua C kẻ đường thẳng vuông góc với BD tại E. Chứng minh AE = EC
Cho tam giác ABC nhọn (AB < AC) có hai đường cao AD và BE cắt nhau tại H. a) Chứng minh tam giác HEA đồng dạng tam giác HDB. b) Kẻ DK vuông góc AC tại K. Chứng minh CD2 = CK.CA c) Gọi N là trung điểm của CK. Trên tia đối của tia AD lấy điểm F sao cho AF = AD. Chứng minh FK vuông góc DN tại S.
Cho tam giác ABC vuông có AB = 9cm , AC = 12cm . Vẽ phân giác BD
a) Tính BD , AD
b) Qua D vẽ đường thẳng vuông góc với BC tại H , cắt tia BA tại E . chứng minh \(\Delta ABC\) đồng dạng \(\Delta HDC\) . Tính diện tích \(\Delta ADE\)