\(a,\Leftrightarrow\left(2x-2-\sqrt{3}\right)\left(2x+2+\sqrt{3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=2+\sqrt{3}\\2x=-2-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2+\sqrt{3}}{2}\\x=\dfrac{-2-\sqrt{3}}{2}\end{matrix}\right.\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\left(\sqrt{x}-\sqrt{13}\right)^2-\left(2\sqrt{13}\right)^2=0\\ \Leftrightarrow\left(\sqrt{x}-3\sqrt{13}\right)\left(\sqrt{x}+\sqrt{13}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\sqrt{13}\\\sqrt{x}=-\sqrt{13}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=117\left(tm\right)\\x\in\varnothing\left(\sqrt{x}\ge0\right)\end{matrix}\right.\\ \Leftrightarrow x=117\)