giải pt vô tỉ sau bằng phương pháp đặt ẩn phụ
a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
b)\(\sqrt[3]{x+5}+\sqrt[3]{4-x}=\sqrt[3]{x+24}\)
giải các phương trình sau:
\(\)1, \(\sqrt{10-x}+\sqrt{x+3}\)=5
2, \(\sqrt{15-x}+\sqrt{3-x}\)=6
3, \(\sqrt{4x+1}-\sqrt{3x+4}=1\)
4, \(\sqrt{x+\sqrt{2x-1}}\)+\(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
5, \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
Giải phương trình :a,\(\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\)
b,\(\sqrt{x^2 +1-2x}+\sqrt{x^2+4-4x}=\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
c,\(x^2-x-1=\sqrt{8x+1}\)
Bài 1 Tìm x để phương tình xđ (a)\(\sqrt{\frac{2019}{x-2020}}\) (b)\(\sqrt{\frac{5}{x^2}}\) (c)\(\sqrt{\frac{-1}{3x+5}}\) (d)\(\sqrt{\frac{x-3}{1-x}}\) Bài 2 Giải phương trình (a)\(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (b)\(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}\sqrt{9x-45}=4\) (c)\(3\sqrt{2x+1}-6>9\) (d)\(\frac{\sqrt{x}+1}{3}>4\)
Giải phương trình
1) \(3x^2+6x-\frac{4}{3}=\sqrt{\frac{x+7}{3}}\)
2) \(9x^2-x-4=2\sqrt{x+3}\)
3) \(x^2+\sqrt{x+5}=5\)
4) \(2x^2+2x+1=\left(4x-1\right).\sqrt{x^2+1}\)
5) \(x\sqrt{x^2-x+1}+2\sqrt{3x+1}=x^2+x+3\)
Giải các phương trình:
1) \(\sqrt{x^2-2x+1}=x^2-1\)
2) \(\sqrt{4x^2-4x+1}=x-1\)
3) \(\sqrt{x^4-2x^2+1}=x-1\)
4) \(\sqrt{x^2+x+\frac{1}{4}}=x\)
5) \(\sqrt{x^4-8x^2+16}=2-x\)
6) \(\sqrt{9x^2+6x+1}=\sqrt{11-6\sqrt{2}}\)
Giải các phương trình:
1) \(\sqrt{2x+5}=\sqrt{1-x}\)
2) \(\sqrt{2x-1}=\sqrt{x-1}\)
3) \(\sqrt{2x^2-3}=\sqrt{4x-3}\)
4) \(\sqrt{x^2-x}=\sqrt{3-x}\)
5) \(\sqrt{x^2-x}=\sqrt{3x-5}\)
6) \(\sqrt{x^2-x-6}=\sqrt{x-3}\)
giải phương trình:
a/\(\frac{\sqrt{x}-2}{\sqrt{x}-5}=\frac{\sqrt{x}-4}{\sqrt{x}-6}\)
b/\(\sqrt{18x+9}-\sqrt{8x+4}+\frac{1}{3}\sqrt{2x+1}=4\)
c/\(\sqrt{4x-8}-\frac{1}{2}\sqrt{x-2}+\sqrt{9x-18}=9\)
Giải phương trình :
a,\(\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}=2\)
b,\(\sqrt{2x-1+2\sqrt{x^2-x}}+\sqrt{2x-1-2\sqrt{x^2-x}}=5\) với \(x\frac{>}{ }1\)
c,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)