giải phương trình:
a/\(\frac{\sqrt{x}-2}{\sqrt{x}-5}=\frac{\sqrt{x}-4}{\sqrt{x}-6}\)
b/\(\sqrt{18x+9}-\sqrt{8x+4}+\frac{1}{3}\sqrt{2x+1}=4\)
c/\(\sqrt{4x-8}-\frac{1}{2}\sqrt{x-2}+\sqrt{9x-18}=9\)
Bài 1: Giải PT
a) \(\sqrt{x^2-1}-x^2+1=0\)
b) \(\sqrt{x^2-4}-x+2=0\)
c) \(\sqrt{x^4-8x^2+16}=2-x\)
d) \(\sqrt{9x^2+6x+1}\sqrt{11-6\sqrt{2}}\)
e) \(\sqrt{4^2-9}=2\sqrt{2x+3}\)
f) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
giải các pt
1, \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
2, \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
3, \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
4, \(2x^2+\sqrt{x^2-4x+12}=4x+8\)
5, \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
Giải phương trình :a,\(\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\)
b,\(\sqrt{x^2 +1-2x}+\sqrt{x^2+4-4x}=\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
c,\(x^2-x-1=\sqrt{8x+1}\)
Giải phương trình
1) \(3x^2+6x-\frac{4}{3}=\sqrt{\frac{x+7}{3}}\)
2) \(9x^2-x-4=2\sqrt{x+3}\)
3) \(x^2+\sqrt{x+5}=5\)
4) \(2x^2+2x+1=\left(4x-1\right).\sqrt{x^2+1}\)
5) \(x\sqrt{x^2-x+1}+2\sqrt{3x+1}=x^2+x+3\)
giải các phương trình sau:
\(\)1, \(\sqrt{10-x}+\sqrt{x+3}\)=5
2, \(\sqrt{15-x}+\sqrt{3-x}\)=6
3, \(\sqrt{4x+1}-\sqrt{3x+4}=1\)
4, \(\sqrt{x+\sqrt{2x-1}}\)+\(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
5, \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
Giải phương trình :
a,\(\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}=2\)
b,\(\sqrt{2x-1+2\sqrt{x^2-x}}+\sqrt{2x-1-2\sqrt{x^2-x}}=5\) với \(x\frac{>}{ }1\)
c,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
Giải phương trình \(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
\(\sqrt{6-x}+\sqrt{x+2}=x^2-6x+13\)
\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)
Bài 1 Tìm x để phương tình xđ (a)\(\sqrt{\frac{2019}{x-2020}}\) (b)\(\sqrt{\frac{5}{x^2}}\) (c)\(\sqrt{\frac{-1}{3x+5}}\) (d)\(\sqrt{\frac{x-3}{1-x}}\) Bài 2 Giải phương trình (a)\(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (b)\(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}\sqrt{9x-45}=4\) (c)\(3\sqrt{2x+1}-6>9\) (d)\(\frac{\sqrt{x}+1}{3}>4\)