a) \(\left(x+3\right)^2+2\left(x-1\right)^2=\left(3x-7\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+6x+9+2\left(x^2-2x+1\right)=3x^2-6x-7x+14\)
\(\Leftrightarrow x^2+6x+9+2x^2-4x+2-3x^2+6x+7x-14=0\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=0,2\)
b) \(\left(x-3\right)^2-3x=\left(x+2\right)^3+1\)
\(\Leftrightarrow x^2-6x+9-3x-x^3-6x^2-12x-8-1=0\)
\(\Leftrightarrow x^3+5x^2+21x=0\)
\(\Leftrightarrow x\left(x^2+5x+21\right)=0\)
mà \(x^2+5x+21=x^2+2x\cdot2,5+6,25+14,75=\left(x+2,5\right)^2+14,75\ge14,75>0\forall x\)
\(\Rightarrow x=0\)