a) x3+4x2+x-6=0
<=> x3+x2-2x+3x2+3x-6=0
<=>x(x2+x-2)+3(x2+x-2)=0
<=>(x+3)(x2+x-2)=0
<=>(x+3)(x2+2x-x-2)=0
<=>(x+3)[x(x+2)-(x+2)]=0
<=>(x+3)(x-1)(x+2)=0
=> x+3=0 hay
x-1=0 hay
x+2=0
<=> x=-3 hay x=1 hay x=-2
b)x3-3x2+4=0
\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
c) \(x^4+2x^3+2x^2-2x-3=0\)
\(\Leftrightarrow x^4+2x^3+3x^2-x^2-2x-3=0\)
\(\Leftrightarrow x^2\left(x^2+2x+3\right)-\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+2x+1+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left[\left(x+1\right)^2+2\right]=0\)
\(\Rightarrow\left\{\begin{matrix}x-1=0\\\left(x+1\right)^2+2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=1\\\left(x+1\right)^2=-2\\x=-1\end{matrix}\right.\)(vô lí, vì bình phương một số không thể là số âm)
Vậy phương trình trên có nghiệm là x=1 và x=-1