Giai các bất phương trình sau đây :
a/ \(\dfrac{\sqrt{x^2-4x}}{3-x}\le2\)
b/ \(\dfrac{\sqrt{-2x^2-15x+17}}{x+3}\ge0\)
c/ \(\left(x+3\right)\sqrt{x^2-4}\le x^2-9\)
d/ \(\dfrac{\sqrt{-x^2+x+6}}{2x+5}\ge\dfrac{\sqrt{-x^2+x+6}}{x+4}\)
Giải bất phương trình:
a) \(\frac{1-\sqrt{21-4x-x^2}}{x+4}< \frac{1}{2}\)
b) \(\frac{1-\sqrt{8x-3}}{4x}\ge4\)
c) \(4\left(x+1\right)^2\le\left(2x+10\right)\left(1-\sqrt{3+2x}\right)^2\)
d) \(\left(\sqrt{x+4}+2\right)\left(\sqrt{2x+6}-1\right)< x\)
câu 1: lập bảng xét dấu để tìm nghiệm của bất pt sau:
a/\(4x^2-5x+1\ge0\)
b/\(3x^2-4x+1\le0\)
câu 2:
a/\(|x^2-3x+2|\le8-2x\)
b/\(x^2-5x+\sqrt{x\left(5-x\right)}+2< 0\)
c/\(\sqrt{8+2x-x^2}>6-3x\)
d/\(2\sqrt{1-\frac{2}{x}}+\sqrt{2x-\frac{8}{x}}\ge x\)
e/\(|x^2-4x+3|>2x-3\)
f/\(\sqrt{-x^2+6x-5}\le8-2x\)
g/\(x^2-8x-\sqrt{x\left(x-8\right)}< 6\)
h/\(3\sqrt{1-\frac{3}{x}}+\sqrt{3x-\frac{27}{x}}\ge x\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2-4x+3}{2x-3}\ge x-1\)
b) \(3x^2-\left|4x^2+x-5\right|>3\)
c)\(4x-\left|2x^2-8x-15\right|\le-1\)
d)\(x+3-\sqrt{21-4x-x^2}\ge0\)
e)\(\left\{{}\begin{matrix}x\left(x+5\right)< 4x+2\\\left(2x-1\right)\left(x+3\right)\ge4x\end{matrix}\right.\)
f)\(\dfrac{1}{x^2-5x+4}\le\dfrac{1}{x^2-7x+10}\)
Câu 1: Tìm m để \(mx^2-2mx-1\le0,\forall x\in\left[0;3\right]\)
Câu 2: Giải bất phương trình:
a) \(2\left(x-1\right)\sqrt{x^2+2x-1}\le x^2-2x-1\)
b) \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}>1\)
c)\(\frac{x^2-x}{\sqrt{x^4+3x^2}-2x}\le1\)
d)\(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
e) \(\sqrt{x+1}-\sqrt{3x^2-4x-15}+\sqrt{x-3}>0\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2\left(3x-2\right)\left(x^2-1\right)}{\left(-x^2+2x-3\right)\left(2-x\right)^2}\ge0\)
b) \(\dfrac{x-5}{x-1}>2\)
c) \(2x-\sqrt{x^2-5x-14}< 1\)
d) \(x+\sqrt{x^2-4x-5}< 4\)
e) \(\left\{{}\begin{matrix}\left(4-x\right)\left(x^2-2x-3\right)< 0\\x^2\ge\left(x^2-x-3\right)^2\end{matrix}\right.\)
giải các bất phương trình sau:\(\frac{2x-5}{\left|x-3\right|}+1>0\)
\(\frac{\left|x-2\right|}{x^2-5x+6}>=3\)
\(\sqrt{2x+\sqrt{6x^2+1}}>x+1\)
\(\sqrt{x+3}-\sqrt{7-x}>\sqrt{2x-8}\)
\(\sqrt{2-x}>\sqrt{7-x}-\sqrt{-3-2x}\)
\(\sqrt{2x+3}+\sqrt{x+2}\le1\)
\(\left(x+5\right)\left(x-2\right)+3\sqrt{x\left(x+3\right)}>0\)
1:Cho x;y>0:\(\frac{2}{x}+\frac{3}{y}=6\).Tìm min P=x+y
2:Cho x;y;z>0:x+y+z\(\le\)1.Chứng minh\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
3:cho a;b;c;d>0.Chứng minh\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
4:Tìm max,min y=x+\(\sqrt{4-x^2}\)
5:Cho \(a\ge1;b\ge1\).Chứng minh \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
6:Chứng minh:\(\left(ab+bc+ca\right)^2\ge3\text{a}bc\left(a+b+c\right)\)
1) Giải bất phương trình sau:
a) |1-3x|≤7
b) \(\sqrt{3x^2-2x-5}\)≤x+1
2) Bằng cách lập bảng xét dấu, giải bất phương trình:
\(\frac{\left(2x-1\right)\left(3-x\right)}{x^2-5x+4}\)>0
3) Giải phương trình
x+4-\(\sqrt{14x-1}\)=\(\frac{\sqrt{10x-9}-1}{x}\)