Giải phương trình:
a) \(2\sqrt{x}\) + 1 = \(\sqrt{2}\) = 5
b) \(\dfrac{\sqrt{x-1}}{\sqrt{x-2}}\)= \(\dfrac{1}{2}\)
c) \(\dfrac{1}{\sqrt{x-3}}\) = \(\dfrac{2}{\sqrt{x-5}}\)
Giải phương trình:
\(\sqrt{x-\dfrac{1}{2}+\sqrt{x-\dfrac{1}{2}+\sqrt{x+\sqrt{x-\dfrac{1}{4}}}}}=2\) với \(x\ge\dfrac{1}{4}\)
Giải phương trình:
a) \(\dfrac{1}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}=4\)
b) \(\dfrac{8-\sqrt{x}}{\sqrt{x}-7}+\dfrac{1}{7-\sqrt{x}}=8\)
giải phương trình
a)\(\dfrac{\sqrt{x}-2}{\sqrt{x}-4}=\dfrac{\sqrt{x}-6}{\sqrt{x}-7}\)
b)\(2+\sqrt[3]{x+5}=0\)
c)0,5\(\sqrt{\dfrac{2}{x}}-\sqrt{\dfrac{8}{25x}}+\sqrt{\dfrac{1}{4x}}=\dfrac{1}{5}\)
Giải phương trình ;
a) \(\sqrt{x}+\sqrt{x+1}=\dfrac{1}{\sqrt{x}}\)
b) \(x+\dfrac{2\sqrt{2}x}{\sqrt{1}+x}=1\)
Chứng minh các đẳng thức :
a)\(\dfrac{\left(\sqrt{x}1\right)^2+4\sqrt{x}}{\sqrt{x}+1}-\dfrac{x-\sqrt{x}}{\sqrt{x}}=2\)
b)\(\dfrac{1-x}{1-\sqrt{x}}-\left(1-\dfrac{1}{\sqrt{x}}\right)\cdot\sqrt{x}=2\)
MỌI NGƯỜI GIẢI CÂU NÀY GIÚP MÌNH VỚI!!!!!
Rút gọn:
1) \(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}-2\sqrt{3}\)
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
2) \(\sqrt{3-2\sqrt{2}}+\dfrac{1}{\sqrt{2}-1}\)
\(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right).\dfrac{a-4}{\sqrt{4a}}\)
\(N=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{x+\sqrt{x}-6}\right)\)
\(Q=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{2-\sqrt{x}}\right)\)
Làm chi tiết giúp mình với vì mình yếu phần này lắm
Rút gọn các biểu thức sau
a,\(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
b,\(B=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{2x\sqrt{x}-2x+2\sqrt{x}-3}{x\sqrt{x}+1}\)
c,\(C=\left(1-\dfrac{x+3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)
d,\(D=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
e,\(E=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Tính:
\(\dfrac{1}{2+\sqrt{x}}-\dfrac{1}{2-\sqrt{x}}\)
A. \(-\dfrac{2\sqrt{x}}{4-x}\)
B. \(-\dfrac{2\sqrt{x}}{4-x^2}\)
Giải thích