Giải các bất phương trình và biểu diễn tập nghiệm trên trục số:
a) x – 1 < 3 b) x + 2 > 1
c) 0,2x < 0,6 d) 4 + 2x < 5
Giải các bất phương trình sau và biểu diễn nghiệm trên trục số
a, 2x + 3(x – 2) < 5x – (2x – 4).
a) \(\frac{6}{x^2+4x}+\frac{3}{2x+8}\)
b)\(\frac{4xy-5}{10x^3y}-\frac{6y^2-5}{10x^3y}\)
giải giúp mình với mình muốn xem thử kết quả của mình có sai không <3
a) \(\frac{6}{x^2+4x}+\frac{3}{2x+8}\)
b)\(\frac{4xy-5}{10x^3y}-\frac{6y^2-5}{10x^3y}\)
giải giúp mình với mình muốn xem thử kết quả của mình có sai không <3
Giai phương trình sau :
\(\frac{x-3}{4}-5=\frac{1-2\left(x+3\right)}{5}\)
Mình còn hai baì nữa các bạn giúp nha
[Lớp 8]
Bài 1. Giải phương trình sau đây:
a) \(7x+1=21;\)
b) \(\left(4x-10\right)\left(24+5x\right)=0;\)
c) \(\left|x-2\right|=2x-3;\)
d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)
Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:
\(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)
Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)
Bài 4. Giải bài toán bằng cách lập phương trình:
Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút.
Tính quãng đường AB.
Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.
a) Chứng minh: ΔHAC đồng dạng với ΔABC;
b) Chứng minh AH2=AD.AB;
c) Chứng minh AD.AB=AE.AC;
d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)
Đề bài : CHứn minh các biểu thức sau không phụ thuộc vào x :
(4x-1)3 - (4x-3)(16x2+3)\(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)\(\frac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)3 Giải các phương trình
a/ 10 - 4x = 2x - 2
b/\(\frac{5x-2}{3}\)=\(\frac{5-3x}{2}\)
c/3x - 15 = 2x (x - 5)
d/\(\frac{x^2-6}{x}=x+\frac{3}{2}\)
giải bất phương trình
\(\frac{1}{2x-3}\)-\(\frac{3}{x\left(2x-3\right)}\)=\(\frac{5}{x}\)