Rút gọn và tính giá trị của biểu thức tại x = -1,76 và y = 3/25
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
Bài 1. Tìm GTNN của A.
A =\(\frac{x^4+2x^3+8x+16}{x^4-2x^3+8x^2-8x+16}\)
Bài 2. Rút gọn biểu thức và tính giá trị với x + y = 2005
P = \(\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
Bài 3. Cho b>a>0 và \(\frac{a^2+b^2}{ab}\) = \(\frac{10}{3}\)
Tính A = \(\frac{a-b}{a+b}\)
Bài 1 : Tính giá trị biểu thức sau , biết x+y-2=0
a ) M = x^3+x^2y+2x^2-xy-y^2+3y+x-1
b ) N= x^3-2x^2-xy^2+2xy+2y+2x-2
c ) P = x^4+2x^3y-2x^3+x^2y^2-2x^2y-x*(x+y )+2x+3
Rút gọn
a) \(x.\left(x+4\right).\left(x-4\right)-\left(x^2+1\right).\left(x-1\right)\)
b) \(\left(y-3\right).\left(y+3\right).\left(y^2+9\right)-\left(y^2+2\right).\left(y^2-2\right)\)
a) Tìm x,y biết: x4+x2-y2+y+10=0
b) Tính giá trị biểu thức: \(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
Tìm giá trị nhỏ nhất của các biểu thức sau:
a. A = x^2 - 3x + 5
b. C = x^2 - 2x + y^2 - 4y + 7
c. D = (x - 1)(x + 2)(x + 3)(x + 6)
d.E= \(\left|2x-3\right|+\left|2x-7\right|\)
Phân tích đa thức thành nhân tử :
1 ) \(a\left(m+n\right)+b\left(m+n\right)\)
2 ) \(a^2\left(x+y\right)-b^2\left(x+y\right)\)
3 ) \(6a^2-3a+12ab\)
4 ) \(2x^2y^4-2x^4y^2+6x^3y^3\)
5 ) \(\left(x+y\right)^3-x\left(x+y\right)^2\)
Bài 1: CMR:
Nếu 10x^2 + 5xy - 3y^2 =0 thì 2x-y/3x-y + 5y-x/3x+y = -3
Bài 2: Tìm các giá trị của số nguyên x sao cho:
1/x + 1/x+2 + x-2/x^2 + 2x nhận giá trị nguyên
Bài 3: Tìm a,b biết:
a) 1/x^2 - 4 = 9/x-2 + b/x+2
b) 1/x^3 +1 = a/x+1 + bx + c/x^2 -x +1
giúp mình vs m.n ơi
Tính giá trị của biểu thức :
A= xy(x+y)-x^2(x+y)-y^2(x-y) với x=3 ; y = 2
B= (2x-1)^2-(2x-1)(3-2x) với x=1