Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
\(y=sin\dfrac{2x}{x^2+1}+cos\dfrac{x}{x^2+1}+1\)
Cho hàm số y=\(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\) với x thuộc \(\left(\dfrac{\text{π}}{4};\dfrac{\text{π}}{2}\right)\). Tìm giá trị nhỏ nhất của hàm số
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số :
a) \(y=3-2\left|\sin x\right|\)
b) \(y=\cos x+\cos\left(x-\dfrac{\pi}{3}\right)\)
c) \(y=\cos^2x+2\cos2x\)
d) \(y=\sqrt{5-2\cos^2x\sin^2x}\)
Tìm txđ của hàm số sau:
1.\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)
2.\(y=\dfrac{3}{sin^2x-cos^2x}\)
3.\(y=cos\left(x-\dfrac{\pi}{3}\right)+tan2x\)
Giá trị lớn nhất, nhỏ nhất của các hàm số :
a/ \(y=\sqrt{2-\sin x}\)
b/ \(y=\sin\dfrac{x}{2-x}\)
c/ \(y=\sin\left(\dfrac{2x}{\sqrt{x-1}}\right)\)
d/ \(y=\tan x+\cot2x\)
e/ \(y=\sqrt{\dfrac{\cos x+3}{\sin x+1}}\)
Cho hàm số \(y=\sin\dfrac{2x}{x^2+1}+\cos\dfrac{4x}{x^2+1}+1\)
Tìm giá trị lớn nhất của hàm số trên??
Tìm giá trị lớn nhất và nhỏ nhất của hàm số y= sin^2x +2sinx
Tìm tập xác định của các hàm số :
a) \(y=\sqrt{\cos x+1}\)
b) \(y=\dfrac{3}{\sin^2x-\cos^2x}\)
c) \(y=\dfrac{2}{\cos x-\cos3x}\)
d) \(y=\tan x+\cot x\)
Với những giá trị nào của x, ta có mỗi đẳng thức sau :
a) \(\dfrac{1}{\tan x}=\cot x\)
b) \(\dfrac{1}{1+\tan^2x}=\cos^2x\)
c) \(\dfrac{1}{\sin^2x}=1+\cot^2x\)
d) \(\tan x+\cot x=\dfrac{2}{\sin2x}\)