Xin phép được sửa đề :3
\(A=1+\sqrt{2x^2-4x+2020}\)
\(=1+\sqrt{2\left(x^2-2x+1\right)+2018}\)
\(=1+\sqrt{2\left(x-1\right)^2+2018}\ge1+\sqrt{2018}\)
Vậy GTNN của A là \(1+\sqrt{2018}\) khi \(x=1\)
Xin phép được sửa đề :3
\(A=1+\sqrt{2x^2-4x+2020}\)
\(=1+\sqrt{2\left(x^2-2x+1\right)+2018}\)
\(=1+\sqrt{2\left(x-1\right)^2+2018}\ge1+\sqrt{2018}\)
Vậy GTNN của A là \(1+\sqrt{2018}\) khi \(x=1\)
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
* Giải phương trình
a. \(\sqrt{x^2-4x+4}=5\)
b. \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
* Cho biểu thức
A= \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a>0
a. Rút gọn biểu thức A
b. Tính giá trị nhỏ nhất của A
Tính giá trị biểu thức
A= \(\left(4x^5+4x^4-5x^3+2x-2\right)^2+2020\) khi \(x=\dfrac{\sqrt{5}-1}{2}\)
giá trị nhỏ nhất của 2+ \(\sqrt{2x^2-4x+5}\) là ?
a) Tìm giá trị lớn nhất của biểu thức A = \(\sqrt{-x^2+x+\dfrac{3}{4}}\)
b) Tìm giá trị nhỏ nhất của biểu thức B = \(\sqrt{4x^4-4x^2\left(x+1\right)+\left(x+1\right)^2+9}\)
c) Tìm giá trị nhỏ nhất của biểu thức C = \(\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)
Cho \(x=\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\). Tính giá trị của biểu thức:
\(B=\left(x^4-2x^3-x^2+2x-1\right)^{2020}\)
tìm giá trị nhỏ nhất của biểu thức
\(P=\sqrt{x^2-2x+5}\)
Bài 1: Tìm giá trị nhỏ nhất của biểu thức
a) A = \(\sqrt{x^2-8x+20}-12\)
b) B = 2.\(\sqrt{x^2+3x+5}\)
c) C = \(\frac{3}{1+\sqrt{2x-x^2+8}}\)
Bài 2: Tìm giá trị lớn nhất của biểu thức:
a) A = \(\sqrt{7-2x^2}\)
b) B = \(\sqrt{-4x^2-4x+6}+5\)
c) C = 7 + \(\sqrt{-4x^2+4x}\)
Cho hai biểu thức A = xx -2 - x +1x + 2 + 4x-4 và B = , với , x≠4 1) Tính giá trị của biểu thức B khi x = . 2) Rút gọn biểu thức M = A : (B + 1) 3) Tìm giá trị nhỏ nhất của biểu thức M.