Lời giải:
ĐKXĐ: \(2\leq x\leq 7\)
PT \(\Leftrightarrow (x^2-3x)+(1-\sqrt{x-2})+(2-\sqrt{7-x})=0\)
\(\Leftrightarrow x(x-3)-\frac{x-3}{\sqrt{x-2}+1}+\frac{x-3}{\sqrt{7-x}+2}=0\)
\(\Leftrightarrow (x-3)\left[x-\frac{1}{\sqrt{x-2}+1}+\frac{1}{\sqrt{7-x}+2}\right]=0\)
Ta thấy: \(x\geq 2>1; \sqrt{x-2}+1\geq 1\Rightarrow \frac{1}{\sqrt{x-2}+1}\leq 1; \frac{1}{\sqrt{7-x}+2}>0\)
\(\Rightarrow x-\frac{1}{\sqrt{x-2}+1}+\frac{1}{\sqrt{7-x}+2}>0\)
\(\Rightarrow x-\frac{1}{\sqrt{x-2}+1}+\frac{1}{\sqrt{7-x}+2}\neq 0\)
Do đó: \(x-3=0\Leftrightarrow x=3\) (thỏa mãn)
Vậy PT có nghiệm $x=3$