\(\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)
ĐKXĐ:\(x>0;x\ne1;x\ne2\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\left(\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{1+\sqrt{x}}\)
\(=\frac{x}{\sqrt{x-1}}\)