lúc đầu ý bn là 5/1.3 đúng k, mk chỉnh lại như thế cho tiện nhé
a) \(\frac{5}{1\times3}+\frac{5}{3\times5}+\frac{5}{5\times7}+...+\frac{5}{99\times101}\)
\(=\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{5}{2}\times\frac{100}{101}=\frac{250}{101}\)
b) \(\frac{3^2}{8\times11}+\frac{3^2}{11\times14}+\frac{3^2}{14\times17}+...+\frac{3^2}{197\times200}\)
\(=\frac{9}{8\times11}+\frac{9}{11\times14}+\frac{9}{14\times17}+...+\frac{9}{197\times200}\)
\(=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(=3\left(\frac{1}{8}-\frac{1}{200}\right)\)
\(=3\times\frac{3}{25}=\frac{9}{25}\)
Ta có \(\frac{3^2}{8.11}+\frac{3^2}{11.14}+...+\frac{3^2}{197.200}\)
\(\Rightarrow3^2.\left(\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{197.200}\right)\)
\(\Rightarrow9.\frac{1}{3}.\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(\Rightarrow3.\left(1-\frac{1}{200}\right)\)
\(\Rightarrow3.\frac{199}{200}=\frac{597}{200}\)
a) \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
\(=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\frac{100}{101}\)
\(=\frac{250}{101}\)
Có \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.100}\)
\(=5\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)
\(=5.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\frac{100}{101}\)
\(=\frac{250}{101}\)
b, \(\frac{3^2}{8.11}+\frac{3^2}{11.14}+...+\frac{3^2}{197.200}\)
\(=3^2.\left(\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{197.200}\right)\)
\(=9.\frac{1}{2}.\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(=3.\left(\frac{1}{8}-\frac{1}{200}\right)\)
\(=3.\frac{3}{25}\)
\(=\frac{9}{25}\)
Đây là mk làm lại nha!Nhân Văn