3) \(\frac{1-x}{x+1}-\frac{3+2x}{x+1}=0\)
13) \(\frac{x+2}{x}-\frac{x^2+5x+4}{x\left(x+2\right)}=\frac{x}{x+2}\)
14) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{20}{\left(x+1\right)\left(2-x\right)}\)
16) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
17) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
18) \(\frac{x-1}{x}+\frac{1}{x+1}=\frac{2x-1}{2x^2+2}\)
19) \(\frac{2}{x+1}-\frac{3x+1}{\left(x+1\right)}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)
20) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
Giải các phương trình sau
a) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
b) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
c) \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)
d) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
e) \(\frac{1}{x-2}+\frac{5}{x+1}=\frac{3}{2-x}\)
f) \(\frac{5x}{2x+2}+1=-\frac{6}{x+1}\)
g) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)
h) \(\frac{3x}{x-2}-\frac{x}{x-5}=\frac{3x}{\left(x-2\right)\left(5-x\right)}\)
Giải các phương trình sau
a) \(\frac{7x-3}{x-1}=\frac{2}{3}\)
b) \(\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\)
c) \(\frac{1}{x-2}+3=\frac{3-x}{x-2}\)
d) \(\frac{8-x}{x-7}-8=\frac{1}{x-7}\)
e) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
f)\(\frac{1}{x-1}+\frac{2}{x+1}=\frac{x}{x^2-1}\)
g) \(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
h)\(5+\frac{76}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
i) \(\frac{90}{x}-\frac{36}{x-6}=2\)
k) \(\frac{1}{x}+\frac{1}{x=10}=\frac{1}{12}\)
l) \(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\)
m) \(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\)
n) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
o)\(\frac{x}{2x+6}-\frac{x}{2x+2}=\frac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
p) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)
q) \(\frac{5}{x+7}+\frac{8}{2x+14}=\frac{3}{2}\)
r) \(\frac{x-1}{x}=\frac{1}{x+1}=\frac{2x-1}{x^2+x}\)
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
a, (x-1)3 - x(x-1)2 = 5(2-x) - 11(x+2)
b, (x-2)3 + (3x-1)(3x+1) = (x+1)3
c, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)
d, \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)
e, \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
3) \(\frac{x-2}{x-5}\) \(-\frac{5}{x^2-5x}=\frac{1}{x}\)
\(\Leftrightarrow\) \(\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\)
\(\Leftrightarrow\frac{\left(x-2\right).\left(x+5\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x+5\right)}{x.\left(x-5\right)}\)
\(\Leftrightarrow x^2+5x-2x-10-5=1x+5\)
\(\Leftrightarrow x^2+5x-2x-1x-10-5-5\) = 0
\(\Leftrightarrow\) \(x^2+2x-20=0\)
\(\Leftrightarrow x^2+2x-10x-20=0\)
\(\Leftrightarrow\) (x\(^2\) + 2x) - (10x + 20) = 0
\(\Leftrightarrow\) x.(x + 2) - 10.(x + 2) = 0
\(\Leftrightarrow\)
4) \(\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x^2+7x}\)
\(\Leftrightarrow\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x\left(x+7\right)}\)
\(\Leftrightarrow\frac{\left(x-4\right).\left(x+7\right)}{x.\left(x+7\right)}-\frac{1.\left(x+7\right)}{x.\left(x+7\right)}=\frac{-7}{x.\left(x+7\right)}\)
\(\Leftrightarrow\) \(x^2+7x-4x-28-x-7=-7\)
\(\Leftrightarrow x^2+7x-4x-x-28-7+7=0\)
\(\Leftrightarrow\) x\(^2\) + 2x - 28 = 0
\(\Leftrightarrow\) x\(^2\) + 2x - 14x - 28 = 0
\(\Leftrightarrow\) (x\(^2\) + 2x) - (14x + 28) = 0
\(\Leftrightarrow\) x.(x + 2) - 14.(x + 2) = 0
\(\Leftrightarrow\) (x - 14) = 0 hoặc (x + 2) = 0
\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = -2 (Loại)
5) \(\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{8x}{x^2-4}\)
\(\Leftrightarrow\) \(\frac{\left(x+2\right).\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(x-2\right).\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{8x}{\left(x-2\right).\left(x+2\right)}\)
\(\Leftrightarrow x^2+2x+2x+4+x^2-2x-2x+4=8x\)
\(\Leftrightarrow\) \(x^2+x^2+2x+2x-2x-2x-8x+4+4=0\)
\(\Leftrightarrow2x^2-8x+8=0\)
\(\Leftrightarrow\) 2x\(^2\) - 2x - 8x + 8 = 0
\(\Leftrightarrow\) 2x(x - 1) - 8(x - 1) = 0
\(\Leftrightarrow\) 2x - 8 = 0 hoặc x - 1 = 0
\(\Leftrightarrow\) 2x = 8 hoặc x = 1
\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = 1 (Nhận)
Vậy S = {4; 1}
6) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)
\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}=\frac{4}{\left(x-1\right).\left(x+1\right)}\)
\(\Leftrightarrow\) x\(^2\) + x + x + 1 - x\(^2\) + x + x - 1 = 4
\(\Leftrightarrow\) 4x - 4 = 0
\(\Leftrightarrow\) 4 (x - 1) =0
\(\Leftrightarrow\) x - 1 = 0 / 4 = 0
\(\Leftrightarrow\) x = 1 (Nhận)
Vậy S = {1}
7) \(\frac{x+1}{x-1}+\frac{-4x}{x^2-1}=\frac{x-1}{x+1}\)
\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{-4x}{\left(x-1\right).\left(x+1\right)}=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x+1\right)}\)
\(\Leftrightarrow x^2+x+x+1-4x=x^2-x-x+1\)
\(\Leftrightarrow\) 0
Vậy S ={\(\varnothing\)}
Giải các phương trình sau:
a) \(\left(\frac{x-2}{x-1}\right)^2-5\left(\frac{x+2}{x+1}\right)^2+4\left(\frac{x^2-4}{x^2-1}\right)=1\)
b) \(\left(\frac{x-1}{x}\right)^2+\left(\frac{x-1}{x-2}\right)^2=\frac{40}{9}\)
c) \(x.\frac{4-x}{x+2}.\left(\frac{8-2x}{x+2}\right)=3\)
d) \(\frac{1}{3x-2020}+\frac{1}{4x-2018}+\frac{1}{5x-2017}=\frac{1}{12x-2019}\)
Bài 1: Giải các phương trình:
a) \(x+\frac{2x-1}{1-x}=-1\)
b) \(x+\frac{1}{x}=2\)
Bài 2: Giải các phương trình:
a) \(\frac{x}{x-2}=\frac{x-2}{x-3}\)
b) \(\frac{2x-4}{x-1}-\frac{x-3}{x-2}=1\)
c) \(\frac{x+3}{x-1}-\frac{3}{X-1}+\frac{x^2-2}{1-x^2}=0\)
d) \(\frac{2x+1}{x-3}-\frac{3}{x-2}=2\)
Bài 3: Giải các phương trình sau:
a) \(\frac{2x}{x-1}-\frac{x}{x-2}=\frac{x^2}{\left(x-1\right)\left(x-2\right)}\)
b) \(\frac{1}{x+2}\frac{6}{x-1}+\frac{8}{\left(x+2\right)\left(x-1\right)}=0\)
c) \(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x+3\right)\left(x-1\right)}\)
d) \(\frac{x-1}{x+2}-\frac{x+1}{x-2}=\frac{x-3}{4-x^2}\)
giải phương trình sau :
a) 5-(x-6) = 4(3-2x) b) 2x(x+2)2-8x2 = 2(x-2)(x2+4)
c) 7-(2x+4) = -(x+4) d) (x+1)(2x-3) = (2x-1)(x+5
f) \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
e) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)