Đặt A=\(\frac{1}{1^4+4}+\frac{3}{3^4+4}+\frac{5}{5^4+4}+...\frac{(2n-1)}{(2n-1)^4+4} \)
4A=\(\frac{4}{1^4+4}+\frac{3.4}{3^4+4}+\frac{5.4}{5^4+4}+...\frac{4(2n-1)}{(2n-1)^4+4} \)
Xét số hạng tổng quát
\((2n-1)^4+4=(2n-1)^4+4(2n-1)^2+4-4(2n-1)^2=((2n-1)^2+2(2n-1)+2)((2n-1)^2-2(2n-1)+2)\)
=>\(\frac{4(2n-1)}{(2n-1)^4+4}=\frac{1}{(2n-1)^2+2(2n-1)+2}-\frac{1}{(2n-1)^2-2(2n-1)+2} \)
Áp dụng vào A
=>\(\frac{1}{1}- \frac{1}{5}+\frac{1}{5} -\frac{1}{9}+...+\frac{1}{4n^2+1}-\frac{1}{(4(n-1)^2+1} \)
=>4A<1
=>A<\(\frac{1}{4} \)