Bài 2. Tứ giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Đường chéo \(AC\) chia tứ giác \(ABCD\) thành hai tam giác \(ACB\) và \(ACD\) (Hình 7). Tính tổng các góc của tam giác \(ACB\) và tam giác \(ACD\). Từ đó, ta có nhận xét gì về tổng các góc của tứ giác \(ABCD\) .

 

Hà Quang Minh
8 tháng 9 2023 lúc 21:35

Xét \(\Delta ABC\) ta có:

\(\widehat B + \widehat {BAC} + \widehat {BCA} = 180^\circ \) (tính chất tổng ba góc trong tam giác)

Xét \(\Delta DAC\) ta có:

\(\widehat D + \widehat {DAC} + \widehat {DCA} = 180^\circ \)

Ta có:

\(\widehat B + \widehat {BAC} + \widehat {BCA} + \widehat D + \widehat {DAC} + \widehat {DCA} = 180^\circ  + 180^\circ \)

\(\widehat B + \widehat D + \left( {\widehat {BAC} + \widehat {DAC}} \right) + \left( {\widehat {BCA} + \widehat {DCA}} \right) = 360^\circ \)

\(\widehat B + \widehat D + \widehat {BAD} + \widehat {BCD} = 360^\circ \)

Vậy tổng các góc của tứ giác \(ABCD\) bằng \(360^\circ \)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết