Hàm số f(x) = x3 + 2x - 1 xác định trên R và x0 = 3 ∈ R.
f(x) = (x3 + 2x - 1) = 33 + 2.3 - 1 = f(3)
nên hàm số đã cho liên tục tại điểm x0 = 3.
Hàm số f(x) = x3 + 2x - 1 xác định trên R và x0 = 3 ∈ R.
f(x) = (x3 + 2x - 1) = 33 + 2.3 - 1 = f(3)
nên hàm số đã cho liên tục tại điểm x0 = 3.
Ý kiến sau đúng hay sai ?
"Nếu hàm số y = f(x) liên tục tại điểm x0 còn hàm số y = g(x) không liên tục tại x0, thì
y = f(x) + g(x) là một hàm số không liên tục tại x0."
Cho hàm số f(x) =
a) Vẽ đồ thị của hàm số y = f(x). Từ đó nêu nhận xét về tính liên tục của hàm số trên tập xác định của nó.
b) Khẳng định nhận xét trên bằng một chứng minh.
a) Xét tính liên tục của hàm số y = g(x) tại x0 = 2, biết
g(x) = .
b) Trong biểu thức xác định g(x) ở trên, cần thay số 5 bởi số nào để hàm số liên tục tại x0 = 2.
Cho hàm số f(x) = và g(x) = tanx + sin x.
Với mỗi hàm số, hãy xác định các khoảng trên đó hàm số liên tục.
Cho dãy un xác định: \(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_{n+1}=\sqrt{2+u_n}\end{matrix}\right.\forall n\in N^{\cdot}\). Xác định số hạng tổng quát của dãy, xét tính tăng giảm của dãy đó.
Cho dãy un xác định bởi
\(\left\{{}\begin{matrix}x_1=3\\x_{n+1}=\dfrac{1}{2}x_2+2^{n-2}\end{matrix}\right.\) với n = 1,2,...
a) Tìm tất cả các số hạng là các số nguyên trong dãy trên
b) Tìm số hạng tổng quát x0
Cho hàm số f: R\(\rightarrow\)R , \(n\ge2\) là số nguyên . CMR: nếu
\(\dfrac{f\left(x\right)+f\left(y\right)}{2}\ge f\left(\dfrac{x+y}{2}\right)\forall x,y\ge0\) (1) thì ta có :
\(\dfrac{f\left(x_1\right)+f\left(x_2\right)+....+f\left(x_n\right)}{n}\ge f\left(\dfrac{x_1+x_2+...+x_n}{n}\right)\) \(\forall x\ge0,i=\overline{l,n}\)
Xét tính tăng, giảm, bị chặn của dãy số (un) với un = 1/n+1
xét tính bị chặn của dãy số un=\(n^2-\sqrt{n^2+1}\)