Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đoàn Nhật Minh

(Dirichlet)

Chứng minh rằng từ 5 số tự nhiên bất kì, luôn tìm được hai số mà hiệu bình phương của chúng chia hết cho 100.

Nguyễn Huy Hưng
4 tháng 1 2018 lúc 8:41


Nếu có hai số có cùng số dư khi chia cho 100 thì bài toán được giải quyết.Giả sử không có hai số nào có cùng số dư khi chia cho 100.Khi đó, có ít nhất 51 số chia cho 100 có số dư khác 50 là a1,a2,,,.....a51
Đặt bi = -ai(1≤i≤51).Xét 102 số ai;bi.Theo nguyên tắc đi-rích-lê thì tồn tại i#j sao cho ai=bj(mod 100)(tức là ai;bj có cùng số dư khi chia cho 100)
=> ai - bj chia hết cho 100.mà bj=-aj
=> ai+aj chia hết cho 100


Các câu hỏi tương tự
Hà Mai Chi
Xem chi tiết
dream XD
Xem chi tiết
Xem chi tiết
Thái An Phạm Lê
Xem chi tiết
dream XD
Xem chi tiết
dream XD
Xem chi tiết
George H. Dalton
Xem chi tiết
lý vũ huy tuấn
Xem chi tiết
Minh Châu Nguyễn
Xem chi tiết