xét hiệu
\(\dfrac{x^2+y^2+z^2}{3}-\dfrac{\left(x+y+z\right)^2}{9}\ge0\)
<=> \(\dfrac{3\left(x^2+y^2+z^2\right)}{9}-\dfrac{x^2+y^2+z^2+2xy+2yz+2zx}{9}\ge0\)
=> \(3x^2+3y^2+3z^2-x^2-y^2-z^2-2yx-2yz-2xz\ge0\)
<=> \(2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)
<=>\(\left(x^2-2yx+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)\ge0\)
<=> (x-y)2 +(y-z)2 +(x-z)2 ≥ 0 (luôn đúng )
=> đpcm