Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Hồng Phúc

Đề thi thử tuyển sinh lớp 10 chuyên toán - Thời gian : 150 phút

(Dành cho ai cần, mình gửi đáp án sau)

Câu 1.

a, Cho \(x=\sqrt[3]{2+\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\)

Tính giá trị biểu thức \(P=x^4-2x^3-3x^2+2x+8\)

b, Biết rằng phương trình \(x^3-ax+b=0\) ( a, b là các số hữu tỉ ) có nghiệm \(x=\frac{1-\sqrt{2}}{1+\sqrt{2}}\).

Tìm a, b ?

Câu 2.

a, Giải hệ phương trình: \(\left\{{}\begin{matrix}x^3\left(2y+3\right)=1\\x\left(y^3-2\right)=2\end{matrix}\right.\)

b, Giải phương trình: \(x=\left(2020+\sqrt{x}\right)\left(1-\sqrt{1-\sqrt{x}}\right)^2\)

Câu 3.

a, Giải phương trình nghiệm nguyên: \(\sqrt{x^2-3x+2}=y+1\)

b, Cho x, y là các số dương thỏa mãn: \(x+y=1\). Tìm GTNN của biểu thức:

\(P=\frac{1}{x^3+y^3}+\frac{1}{xy}\)

Câu 4. Cho hai đường tròn \(\left(O\right)\)\(\left(O'\right)\) cắt nhau tại A, B. Vẽ tiếp tuyến chung ngoài

MN với hai đường tròn sao cho tia BA cắt MN tại I \(\left(M\in\left(O\right);N\in\left(O'\right)\right)\).

Lấy điểm C đối xứng với A qua I.

a, Chứng minh tứ giác BMCN nội tiếp.

b, Vẽ tiếp tuyến tại A với \(\left(O\right)\) cắt \(\left(O'\right)\) tại E và tiếp tuyến tại A với \(\left(O'\right)\) cắt \(\left(O\right)\)

tại F. MA cắt NE tại H, NA cắt MF tại K. Chứng minh: \(\widehat{MHN}=\widehat{MKN}\)

Câu 5. Cho a, b, c là các số thực dương thỏa mãn: \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\ge1\)

Chứng minh: \(a+b+c\ge ab+bc+ca\)


Các câu hỏi tương tự
Lê Thị Thục Hiền
Xem chi tiết
bach nhac lam
Xem chi tiết
Kun ZERO
Xem chi tiết
tràn thị trúc oanh
Xem chi tiết
Mỹ Lệ
Xem chi tiết
chichi
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Trần Diệp Nhi
Xem chi tiết