`3^(2x-5)=27`
`<=> 2x-5=3`
`<=> 2x=2`
`<=>x=1`
`=>A`
`3^(2x-5)=27`
`<=> 2x-5=3`
`<=> 2x=2`
`<=>x=1`
`=>A`
Đề bài
Nghiệm của phương trình \({\log _{0,5}}(2 - x) = - 1\)
A. 0
B. 2,5
C. 1,5
D. 2
Đề bài
Giải mỗi phương trình sau:
a) \({3^{{x^2} - 4x + 5}} = 9\)
b) \(0,{5^{2x - 4}} = 4\)
c) \({\log _3}(2x - 1) = 3\)
d) \(\log x + \log (x - 3) = 1\)
Đề bài
Giải mỗi bất phương trình sau:
a) \({5^x} < 0,125\)
b) \({\left( {\frac{1}{3}} \right)^{2x + 1}} \ge 3\)
c) \({\log _{0,3}}x > 0\)
d) \(\ln (x + 4) > \ln (2x - 3)\)
Đề bài
Cho \({\log _a}b = 3\) thì \({\log _a}{b^2}\) bằng:
A. 9
B. 5
C. 6
D. 8
Đề bài
Nếu \({3^x} = 5\) thì \({3^{2x}}\) bằng:
A. 15
B. 125
C. 10
D. 25
Đề bài
Điều kiện xác định của \({x^{\frac{3}{5}}}\) là:
A. \(x \in \mathbb{R}\)
B. \(x \ge 0\)
C. \(x \ne 0\)
D. \(x > 0\)
Đề bài
Tìm tập xác định của mỗi hàm số sau:
a) \(y = \frac{5}{{{2^x} - 3}}\)
b) \(y = \sqrt {25 - {5^x}} \)
c) \(y = \frac{x}{{1 - \ln x}}\)
d) \(y = \sqrt {1 - {{\log }_3}x} \)
Đề bài
Tập xác định của hàm số \(y = {\log _{0,5}}\left( {{x^2} - 2x + 1} \right)\) là:
A. \(\mathbb{R}\)
B. \(\mathbb{R}\backslash \{ 1\} \)
C. \(x \ne 0\)
D. \(x > 0\)
Đề bài
Cho x; y là các số thực dương. Rút gọn mỗi biểu thức sau:
\(A = \frac{{{x^{\frac{5}{4}}}y + x.{y^{\frac{5}{4}}}}}{{\sqrt[4]{x} + \sqrt[4]{y}}}\)
\(B = {\left( {\sqrt[7]{{\frac{x}{y}\sqrt[5]{{\frac{y}{x}}}}}} \right)^{\frac{{35}}{4}}}\)