j)\(\left(sinx-sin^2x\right)\left(sinx+2cosx\right)=\sqrt{3}\left(1+sinx\right)\left(1-sinx\right)^2\)
\(\Leftrightarrow sinx\left(1-sinx\right)\left(sinx+2cosx\right)=\sqrt{3}\left(1-sin^2x\right)\left(1-sinx\right)\)
\(\Leftrightarrow\left(1-sinx\right)\left[sin^2x+2sinx.cosx-\sqrt{3}\left(1-sin^2x\right)\right]=0\)
\(\Leftrightarrow\left(1-sinx\right)\left[sin^2x+2sinx.cosx-\sqrt{3}cos^2x\right]=0\)
\(\Leftrightarrow\left(1-sinx\right)\left[sinx-\left(-1-\sqrt{1+\sqrt{3}}\right)cosx\right]\left[sinx-\left(-1+\sqrt{1+\sqrt{3}}\right)cosx\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\left(-1-\sqrt{1+\sqrt{3}}\right)cosx\\sinx=\left(-1+\sqrt{1+\sqrt{3}}\right)cosx\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\tan=-1-\sqrt{1+\sqrt{3}}\\tan=-1+\sqrt{1+\sqrt{3}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=arc.tan\left(-1-\sqrt{1+\sqrt{3}}\right)+k\pi\\x=arc.tan\left(-1+\sqrt{1+\sqrt{3}}\right)+k\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)
Vậy...