Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhi Trần

Đại số hoá pt lượng giác

Lê Thị Thục Hiền
3 tháng 7 2021 lúc 10:23

j)\(\left(sinx-sin^2x\right)\left(sinx+2cosx\right)=\sqrt{3}\left(1+sinx\right)\left(1-sinx\right)^2\)

\(\Leftrightarrow sinx\left(1-sinx\right)\left(sinx+2cosx\right)=\sqrt{3}\left(1-sin^2x\right)\left(1-sinx\right)\)

\(\Leftrightarrow\left(1-sinx\right)\left[sin^2x+2sinx.cosx-\sqrt{3}\left(1-sin^2x\right)\right]=0\)

\(\Leftrightarrow\left(1-sinx\right)\left[sin^2x+2sinx.cosx-\sqrt{3}cos^2x\right]=0\)

\(\Leftrightarrow\left(1-sinx\right)\left[sinx-\left(-1-\sqrt{1+\sqrt{3}}\right)cosx\right]\left[sinx-\left(-1+\sqrt{1+\sqrt{3}}\right)cosx\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\left(-1-\sqrt{1+\sqrt{3}}\right)cosx\\sinx=\left(-1+\sqrt{1+\sqrt{3}}\right)cosx\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\tan=-1-\sqrt{1+\sqrt{3}}\\tan=-1+\sqrt{1+\sqrt{3}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=arc.tan\left(-1-\sqrt{1+\sqrt{3}}\right)+k\pi\\x=arc.tan\left(-1+\sqrt{1+\sqrt{3}}\right)+k\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)

Vậy...


Các câu hỏi tương tự
Phạm Thị Kim Trúc
Xem chi tiết
Phạm Thị Kim Trúc
Xem chi tiết
Phạm Thị Kim Trúc
Xem chi tiết
Phạm Thị Kim Trúc
Xem chi tiết
Phạm Thị Kim Trúc
Xem chi tiết