Bài 3. Chuyển động đều - Chuyển động không đều

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Duy Đức

Cùng một lúc có 2 xe xuất phát từ 2 địa điểm A và B cách nhau 60 km,chúng chuyển động cùng chiều từ A đến B,xe thứ nhất đi từ A với vận tốc 30km/h,xe thứ hai đi từ B với vận tốc 40km/h (cả 2 xe chuyển động thẳng đều)

Tính khoảng cách 2 xe sau 1h kể từ lúc xuất phát?Sau khi xuất phát được 1h30p xe thứ nhất đột ngột tăng vận tốc và đạt tới vận tốc 50km/h.Hãy xác định thời điểm và vị trí 2 xe gặp nhau?

 

Nguyễn Như Nam
11 tháng 11 2016 lúc 20:16

Tóm tắt

\(S_{AB}=60km\)

\(V_1=30km\)/\(h\)

\(V_2=40km\)/\(h\)

\(t_1=1h\)

\(t_2=1,5h\)

\(V_3=50km\)/\(h\)

_____________

a) \(S_{A'B'}=?\)

b) \(t=?;S_{BC}=?\)

Giải

Chuyển động đều, chuyển động không đều

a) Ta có: \(S_{A'B'}=S_{BB'}+\left(S_{AB}-S_{AA'}\right)=V_2.t_1+60-V_1.t_1=t_1\left(V_2-V_1\right)+60=40-30+60=70\left(km\right)\)

b) Gọi \(A_1\) là điểm dừng sau 1,5h đi với vận tốc 30km/h.

Ta có: \(S_{AC}=S_{AA_1}+S_{A_1C}=S_{BC}+S_{AB}\Rightarrow V_1.t_2+V_3\left(t-t_2\right)=V_2.t+60\)

\(\Rightarrow30.1,5+50\left(t-1,5\right)=40t+60\Rightarrow45+50t-75=40t+60\)

\(\Rightarrow50t-40t=75-45+60=90\Rightarrow t=9\left(h\right)\Rightarrow S_{BC}=40.9=360\left(km\right)\)

Vậy thời gian 2 điểm gặp nhau là sau 9h và cách điểm B là 360 km


Các câu hỏi tương tự
Đức Phạm Anh
Xem chi tiết
Vũ Việt Anh
Xem chi tiết
Hiền khánh
Xem chi tiết
ANH DINH
Xem chi tiết
Cao xuân an
Xem chi tiết
Định Quang Lê
Xem chi tiết
Củ Su Hào
Xem chi tiết
Nguyễn Bảo Hà Vy
Xem chi tiết
Đinh Thu Hòa
Xem chi tiết