Giải phương trình
1,sin3x+cos2x=1+2sinx*cos2x
2,cos5x+cos2x+2sin3x*sin2x=0
Cho 3sin3x-3cos2x+4sinx-cos2x+2=0 (1)
Và cos2x+3cosx(sin2x-8sinx)=0 (2).
Tìm nghiệm của (1) đồng thời là nghiệm của (2)
Cho 3sin3x-3cos2x+4sinx-cos2x+2=0 (1)
Và cos2x+3cosx(sin2x-8sinx)=0 (2).
Tìm nghiệm của (1) đồng thời là nghiệm của (2)
Giúp mình câu này với
3cosx.(1-cos2x)+2sin2x+sinx+cos2x=0
1) cos3x - cos4x + cos5x =0
2) sin3x + cos2x = 1 + 2sinx.cos2x
3) cos2x - cosx = 2 sin\(^2\)\(\dfrac{3x}{2}\)
4) cos\(^2\)2x + cos\(^2\)3x = sin\(^2\)x
5) sin3x.sin5x - cos4x.cos6x = 0
giải phương trình:
\(\left(\cos2x+\sin2x\right)\cos x+2\cos2x-\sin x=0\)
Cos(x+1)+cos2x=0
A) 3Cos4x-Sin2x+Cos2x-2=0
B) 1/Sin2x+3Cotx+1=0
C) Cos2x-3Cosx=4Cos2x/2
giải phương trình:
\(4\cos2x\left(\cos2x+4\sin x-3\right)-24\sin x-16\sqrt{3}\cos x+17=0\)
cos2x+sin\(^2\)x+2cosx+1=0