\(\dfrac{x+y}{2\left(x-y\right)}+\dfrac{2y^2}{y-x}=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{2y^2}{x-y}=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{4y^2}{2\left(x-y\right)}=\dfrac{x+y-4y^2}{x-y}\)
\(\dfrac{x+y}{2\left(x-y\right)}+\dfrac{2y^2}{y-x}=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{2y^2}{x-y}=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{4y^2}{2\left(x-y\right)}=\dfrac{x+y-4y^2}{x-y}\)
cong phan thuc
x+y/2+x+2/2x2+4
\(\dfrac{x}{x-y}-\dfrac{1}{x-y}-\dfrac{1-y}{y-x}\)
cong tru phan thuc
cong phan thuc
a)x2+2/x2+4+5/x+2
b)x+y/2+x+2/2x2+4
c)8/(x2+3)(x2-1)+2/x2+3+1/X+1
cong phan thuc
x2+2/x2+4+5/x+2
cong phan thuc
8/(x2+3)+7/x
cong phan thuc
8/(x2+3)(x2-1)+2/x2+3+1/X+1
*Cộng các phân thức sau: a) x^2/x+1 + 2x/x^2-1 + 1/1+x+1 b) 2x+y/2x^2-y + 8y/y^2-4x^2+2x-y/2x^2+xy c) 1/x-y +3xy/y^3-x^3 + x-y/x^2+xy+y^2
Cho x;y;z khác 0 và x+y khác z và y+z khác x thỏa mãn:
\(\dfrac{x^2+y^2-z^2}{2xy}-\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}=1\)
Tính P = x + y + z
Thực hiện phép tính :
a) 8/(x^2+3)*(x^2-1)+ 2/x^2+3+1/x
b) x+y/2*(x-y)-x-y/2(x+y)+2y^2/x^2-y^2