ta có : \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
............
\(\dfrac{1}{n^2}=\dfrac{1}{n.n}< \dfrac{1}{n.(n-1)}\)
đặt tổng đó là A
A=\(\dfrac{1}{2^n}+\dfrac{1}{2^n}+.....+\dfrac{1}{2^n}\)
=\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-....-\dfrac{1}{n-1}+\dfrac{1}{n}\)
=\(\dfrac{1-1}{n}\)
=\(\dfrac{n-1}{n}\)<1
vậy A lớn hơn 1