Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Viên Băng Nghiên

CMR: a) (x+y)(x3-x2y + xy2 - y3 ) = x4 - y4

         b) Nếu (a+b)2 = 2(a2+b2) thì a=b.Từ (a+b)2 = 2(a2 + b2) Thì suy ra điều gì ?

 

 

Cho x+y=a ; x.y=b . Tính giá trị sau theo a và b : x2 + y2 ; x4 + y4

Lovers
16 tháng 8 2016 lúc 13:07

a) Ta có :

\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)

b) Ta có :

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Rightarrow a^2+b^2+2ab=a^2+b^2+a^2+b^2\)

\(\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2+b^2-2ab=0\)

\(\Rightarrow\left(a-b\right)^2=0\)

\(\Rightarrow a-b=0\)

\(\Rightarrow a=b\)

Vậy ...

Ta có :

\(a^2=\left(x+y\right)^2=x^2+y^2+2xy=x^2+y^2+2b\)

\(\Rightarrow x^2+y^2=a^2-2b\)

\(a^4=\left(x+y\right)^4=x^4+C_4^1x^3y+C_4^2x^2y^2+C_4^3xy^3+y^4\)

\(\Rightarrow a^4=x^4+y^4+4x^3y+6x^2y^2+4xy^3\)

\(\Rightarrow a^4=x^4+y^4+2xy\left(2x^2+3xy+2y^2\right)\)

\(=x^4+y^4+2b\left[3b+2\left(x^2+y^2\right)\right]\)

\(=x^4+y^4+2b\left[3b+2\left(a^2-2b\right)\right]\)

\(=x^4+y^4+6b^2+4a^2b-8b\)

\(\Rightarrow x^4+y^4=a^4-\left(6b^2+4a^2b-8b\right)\)

\(=a^4-4a^2b-6b^2+8b\)